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Abstract

Social science has developed an expansive design-based toolkit for causal inference,
but the assumptions that undergird standard approaches often fail in applied settings.
In response, researchers often present unreliable results, narrow their questions post-hoc,
or abandon projects altogether. We demonstrate an alternative approach—automated
partial identification, i.e. best- and worst-case reasoning—that allows researchers to
learn as much as possible in these imperfect settings, while transparently acknowledging
limitations of data and design. Using the autobounds framework, analysts declare an
estimand, state assumptions, and supply discrete data. The program then returns sharp
bounds on the estimand, or a point-identified solution if one exists. By replicating five
published studies across empirical political science subfields, we show how this approach
allows researchers to accommodate threats to standard assumptions about instrumental
variables, difference in differences, sample selection, and mediation in a flexible and
principled manner.
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1 Introduction

Social scientists now possess an expansive set of tools for causal inference, greatly improving

researchers’ ability to draw credible insights from observational data. But as all researchers

know, applied work is messy: real-world scenarios often diverge from the ideal conditions un-

der which standard causal-inference approaches return reliable estimates of causal quantities.

For example, (i) instrumental variables approaches rely on the well-known “exclusion restric-

tion” (Angrist et al., 1996), meaning no direct causal path exists between the instrument and

outcome; (ii) difference-in-differences designs rely on a “parallel trends” assumption (Abadie

et al., 2010; Xu, 2017) that in the absence of treatment, treatment and control groups would

move in tandem over time; (iii) analyses of selected data (Heckman, 1979) rely on the as-

sumption that selection is not driven by unobserved factors that affect outcomes (Elwert and

Winship, 2014); and (iv) mediation designs rely on the “sequential ignorability” assumption

(Imai et al., 2011) that unobserved factors do not affect any combination of treatment, me-

diator, and outcome. These assumptions, discussed in more detail below, are often difficult

to defend outside the tidy examples that appear in statistics textbooks. Applied researchers

have limited options when confronting thorny, real-world scenarios where there is reason to

doubt key assumptions. Typically, researchers either ignore the problem and present unreliable

results, narrow their focus to questions of lesser importance, or abandon projects altogether.

In this paper, we argue that an alternative approach, partial identification, represents a

far more fruitful path for applied work when ideal conditions are unachievable. Rather than

ignoring violations of key assumptions to make seemingly precise but unreliable claims, the

goal of partial identification is to explicitly account for these violations and seek to bound the

quantity of interest—that is, to report best- and worst-case values for the causal question,

given the imperfect information at hand. In other words, partial identification acknowledges

the difficulties of empirical research and asks, “Given all available information, what is the

most that can be learned in spite of these obstacles?”
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The concept of partial identification is not new: decades of research in statistics and

econometrics (Robins, 1989; Manski, 1990a; Heckman and Vytlacil, 2001; Zhang and Rubin,

2003; Cai et al., 2008; Swanson et al., 2018; Gabriel et al., 2020; Molinari, 2020) have devel-

oped and refined techniques for bounding causal quantities in particular scenarios (Lee, 2009;

Gabriel et al., 2020; Kennedy et al., 2019; Knox et al., 2020; Li and Pearl, 2021; Sjölander

et al., 2014). However, depending on the problem, the process of deriving sharp bounds—the

narrowest possible range of answers to a causal question—can be at best tedious, potentially

involving dozens of pages of algebra, and at worst entirely intractable. Scholars have at var-

ious points attempted to automate this process in specific settings (Balke and Pearl, 1994,

1997) or derive bounds for several variants of a problem (Swanson et al., 2018; Gabriel et al.,

2020). A general and computationally feasible solution was only recently presented in Duarte

et al. (2023). With this algorithm, autobounds, users declare a causal quantity of interest (i.e.

an estimand, such as an average treatment effect), state assumptions, and provide discrete

data, i.e. data in which all variables take a finite and countable number of values—however

incomplete or mismeasured. Using an efficient “branch-and-bound” optimization technique

(Vigerske and Gleixner, 2018; Gamrath et al., 2020; Belotti et al., 2009), the algorithm then

efficiently searches over possible data generating processes (DGPs) and locates ones which

satisfy the constraints implied by the stated assumptions and observed data. When complete,

it outputs either sharp bounds on the estimand or, if one exists, a point-identified solution. As

Duarte et al. (2023) states, “This approach can accommodate scenarios involving any classic

threat to inference, including but not limited to missing data, selection, measurement error,

and noncompliance” (p. 1778).

In short, this new tool allows social scientists to flexibly confront the idiosyncracies of

applied research without relying on the often implausible assumptions that come bundled

with off-the-shelf causal-inference designs. Instead, analysts can selectively invoke only the

assumptions that are plausible in their applied settings, acknowledging the design and data
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limitations that they face. Researchers can use it to transparently narrow the range of pos-

sible answers—learning as much as possible about the research question—until more data is

obtained or additional information comes to light that justifies new assumptions. This ap-

proach can do more than simply eliminate implausible assumptions; it can also partially relax

assumptions, for example by stipulating that the treatment group may deviate from parallel

trends by no more than some amount or that a monotonicity assumption may be violated in

no more than some percentage of cases. This allows researchers to conduct sensitivity analyses

on virtually any aspect of a study and to precisely characterize the empirical consequences

of an assumption by quantifying the degree to which its relaxation leads to wider bounds,

which in turn can help direct future research to areas where it can advance scientific progress

the most. As we show below, this tool can also test every possible observable implication

of a set of assumptions, in some cases flagging them as collectively falsified if observed data

were inconsistent with the theorized DGP. In other words, this tool also automatically in-

forms researchers when empirical implications of their theories are contradicted by observed

information.

Perhaps most importantly, this approach allows for question-driven research. The flexibil-

ity of this tool means that the statistical quantity of interest—the research question, formally

stated—need not be retroactively adjusted to suit a particular applied setting. For exam-

ple, researchers can use this tool to easily bound the average treatment effect in an entire

population, where the standard instrumental-variables approach could only target a local av-

erage treatment effect among compliers. In other words, the goal of a study need not change

to accommodate the method being used—a desirable feature as scholars seek to accumulate

knowledge on research questions across independent studies.

To demonstrate the benefits of this approach, we replicate and extend published findings

across empirical subfields of political science to show how standard assumptions can be relaxed

in applied settings. These studies include the consequences of bombing campaigns in Vietnam
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(Kocher et al., 2011); effectiveness of voter mobilization in the United States (Coppock and

Green, 2016); determinants of counterinsurgency in the Peruvian Civil War (Schubiger, 2021);

racial bias in policing (Knox et al., 2020); and the democratic peace theory (Tomz and Weeks,

2013; Acharya et al., 2018). These examples cover many classic approaches in the causal

inference toolkit, including instrumental variables, difference-in-differences, and mediation. In

some cases, we show that standard assumptions can be relaxed only slightly before the study

becomes uninformative about the direction of the effect (i.e. bounds include zero). In other

cases, we show that informative bounds can be recovered even after abandoning assumptions

previously thought to be pivotal. Regardless of the precision of the bounds, we show in each

case how automated partial identification allows researchers to confront difficult challenges in

a principled manner, all while pursuing the same meaningful social question that motivated

a study to begin with.

This paper proceeds as follows. We first review the fundamentals of partial identification

in causal inference and discuss the mechanics of the autobounds algorithm at a high level to

convey intuition and demonstrate its basic functions with a simulated example. Having estab-

lished the basic approach, we then apply it to several common research designs and inferential

obstacles, replicating and extending published work to show how the algorithm performs in

practice. These exercises illustrate how autobounds allows analysts to relax or abandon key

assumptions when their validity is suspect, investigate more meaningful estimands, and direct

future research in efficient ways. We conclude with a discussion of the potential for automated

partial identification to promote more credible, productive and transparent empirical social

science.
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2 Partial Identification with autobounds

2.1 Preliminaries

We first establish notation, review basic concepts in causal inference,1 and demonstrate a

simple partial identification problem using autobounds. To use our approach, the researcher

must first specify a target quantity, or causal estimand : a comparison of average counterfac-

tual quantities. These estimands, which precisely define the scientific question of interest, are

distinct from the estimators, or statistical methods that may be used to answer the question;

they are also distinct from the estimates, or numeric values obtained when applying a particu-

lar estimator to available data. Though estimands are often not specifically defined in applied

social science research (Lundberg et al., 2021), this step is indispensable—without knowing

the target quantity, it is impossible to tell whether a research design functions as intended.

One way to define estimands is using the potential outcomes framework (Rubin, 1974).

Potential outcomes are unit-level attributes representing the counterfactual result that would

appear in the presence or absence of treatment; in contrast, the actual outcome depends on

whether or not treatment was actually received. We denote the actual treatment with D; for

simplicity, we will consider binary treatments unless otherwise stated, though the proposed

approach generalizes straightforwardly to categorical or ordinal treatments. The potential

outcomes are Y (d), with d representing possible treatment values, and the actual outcome

Y is a function of treatment assignment and potential outcomes such that Y = Y (D) =

D · Y (d = 1) + (1 − D)Y (d = 0). In this framework, one possible estimand is the average

treatment effect (ATE):

ATE = E [Y (d = 1)− Y (d = 0)] ,

which is the difference in each unit’s potential outcomes under treatment and control, averaged

over the entire population of interest.

1See Keele (2015) for a more detailed review.
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The central challenge in causal inference is that causal estimands contain elements that

are fundamentally unobservable. For example, if unit i received treatment Di = 1, then the

factual outcome Yi = Yi(Di) = Yi(d = 1) is observed, but the potential outcome Yi(d = 0) in

the counterfactual world where the unit was untreated is unobserved. Addressing this problem

requires an identification strategy, a set of formal assumptions that allow for the estimation

of unobservable quantities from observed data (Angrist and Pischke, 2010).

One tool that can be utilized for identification analysis is the language of causal graphs

(Pearl, 1995a, 2009). Once the graph is written down, it can be defended as a causal repre-

sentation of a theory. Based on that structure, one can then determine whether a causal effect

is nonparametrically identified—i.e., can be estimated without functional-form assumptions

such as no-defiers or parallel-trends assumptions (formally defined in subsequent sections)—or

whether these additional assumptions might be required. Causal graphs offer a compact and

efficient approach to summarizing key information about research designs, and they form an

essential part of our proposed methodology.

Most identification strategies are designed to achieve point identification, recovering a

single, unique value for e.g. the causal effect of a treatment on an outcome. One alternative is

partial identification (Manski, 1990b, 1995), which instead seeks to recover the best- and worst-

case scenarios—upper and lower bounds—that form an interval of possible values for that

causal effect. These bounds are sharp if they provably cannot be narrowed without additional

assumptions or data, meaning that researchers have learned as much as possible from the

available information. The advantage of sharp bounds is that analysts can simply choose not

to invoke assumptions that are indefensible—producing a wider range of possible answers that

may nevertheless be sufficient to answer substantive questions such as whether a particular

effect is positive, negative, or indistinguishable from zero. Partial identification allows analysts

to navigate the trade-off between plausibility of assumptions and informativeness of bounds

by using a nested series of models that add assumptions one at a time, obtaining successively

6



narrower ranges of possible answers on the quantity of interest if the assumptions are true.

This approach clarifies the relationship between the strength of causal modeling assumptions

and the amount of information about the quantity of interest that can be extracted from

available data. (For examples in political science, see Mebane and Poast, 2013 or Keele and

Minozzi, 2012.)

While partial identification thus offers a principled approach to characterizing causal effects

in the presence of incomplete information or questionable research designs, deriving bounds

and proving their sharpness can often be analytically intractable. To address this, Duarte

et al. (2023) provides an easy-to-use algorithm, autobounds, to automatically compute sharp

bounds given the specifics of a causal research question. For details on how this algorithm

functions, we refer readers to Duarte et al. (2023) and the “Problem Formulation” sections in

this paper’s Appendix; here, we seek to convey high-level intuition for autobounds.

At the heart of this procedure is the concept of principal stratification (Frangakis and

Rubin, 2002), which is the process of characterizing units in a study into their essential

types based on how they would respond, counterfactually, when variables in the model take

different values. Perhaps the most well-known example of principal stratification appears in

the instrumental variables approach outlined in Angrist et al. (1996). In this framework, an

exogenous instrument, Z, is thought to encourage treatment, D, which in turn affects an

outcome Y . Given a dichotomous instrument and treatment, Angrist et al. (1996) describes

four principal strata: “always takers,” units which would accept treatment regardless of the

value of Z; “never takers,” units which would never accept treatment; “compliers,” units

which accept treatment if encouraged by the instrument Z but not otherwise; and “defiers,”

units which accept treatment in the absence of encouragement by Z, and reject treatment if

encouraged.

While this classic setup identifies four principal strata based on how the treatment responds

to the instrument, it is possible to represent any discrete causal model in terms of principal
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strata based on how every relevant variable in the system could possibly respond under various

scenarios. As causal systems grow in complexity, the number of principal strata can grow

explosively. However, so long as all variables in the system are discrete, the number of principal

strata will be countable and finite, since there are only so many ways that a discrete variable

can respond to other potentially manipulable discrete variables that are causally upstream.2

Building on this intuition, autobounds works by efficiently enumerating all the principal

strata implied by a causal model. The software takes four inputs: (1) a causal estimand or

target quantity, such as the ATE; (2) a causal theory, represented in a DAG; (3) any additional

functional-form assumptions not captured in the DAG, e.g. “no defiers” or “parallel trends”;

and (4) observed data distributions.3 The software then expresses the causal estimand in terms

of the sizes of these principal strata. For example, the first stage of an instrumental-variables

analysis—the increase in treatment uptake caused by encouragement, E[D(z = 1) − D(z =

0)]—can be expressed as the size of the complier group minus the size of the defier group.4

Next, it translates causal assumptions and observed data into constraints on the possible

sizes of principal strata.5 Duarte et al. (2023) prove that sharp bounds can be obtained

for essentially any quantity of interest in any discrete causal graph by solving the resulting

optimization problem—i.e., maximizing and minimizing the estimand, subject to constraints

imposed by assumptions and data, to obtain best- and worst-case scenarios for the quantity

of interest.

Importantly, autobounds currently only works with analyses in which each variable is

discrete. This is a limitation, but there are feasible workarounds in most applied cases. For

2This remains true even in the case where unobserved confounders are continuous or high-dimensional,
because the class of estimands that we consider never involve manipulation of these unobserved confounders.
Rather, the research questions that are typically asked involve holding these unobserved confounders fixed,
only manipulating the discrete “main variables” such as treatment assignment.

3The user can also specify two tolerance parameters that control the amount of computation time, corre-
sponding to the desired level of provable sharpness and width of bounds, beyond which further computation
is deemed unnecessary. See discussion of ϵthresh. and θthresh. in Duarte et al. (2023).

4This is because E[D(z = 1)] = Pr(always) + Pr(complier) and E[D(z = 0)] = Pr(always) + Pr(defier).
5Crucially, it also uses automated graphical and computer-algebra techniques to simplify the problem by

eliminating redundant information and strata that cannot possibly exist given the stated assumptions and
observed data.
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example, continuous variables can be discretized (binned into a finite number of values, e.g.

low, medium and high) for use with autobounds.6 For many social science applications, this

poses no serious problems, since theories are rarely detailed enough to credibly predict distinct

outcomes for, e.g., voters who are 40 vs. 40 1
12

years old. And in practice, data is rarely truly

continuous: in any real-world dataset, variables will always take on a countably finite number

of values. However, if variables must remain many-valued for an application, it will make

computation of the autobounds algorithm more difficult. We are developing new techniques,

discussed in the Section 4, that will allow for the incorporation of continuous variables under

certain modeling assumptions.

We demonstrate the general autobounds approach in the following section with a simple

coded example. For a step-by-step mathematical explanation of the optimization performed

by autobounds, see Appendix A.

2.2 A Simple Example with Classic Confounding

To demonstrate the algorithm, we consider a simulated data set in which the analyst is

interested in estimating the effect of obtaining a college education, D, on whether one turns

out to vote, Y , but the relationship is confounded by a number of factors. Some of these may

be observed confounders—X, such as an individual’s parental socioeconomic status (SES),

say, low (X = 0) or high (X = 1). Others may be unobserved—U , e.g. birth in a urban

or rural region or interest in politics. The true data-generating process is represented in the

DAG of Figure 1b.7

Suppose the analyst is interested in the ATE, E[Y (d = 1) − Y (d = 0)], equivalent to

Pr(Y (d = 1) = 1)− Pr(Y (d = 0) = 1) since Y is binary. In our simulation, the ATE is 0.13,

6This coarsening is often preferable even in standard regression settings since it relaxes common assump-
tions. When treatments are continuous, for example, common monotonicity assumptions, as in the case of
Instrumental Variables, become much more difficult to satisfy. Continuous variables also often impose func-
tional form assumptions such as linearity. However, because it is nonparametric, autobounds makes no such
functional form assumptions by default; they must be added as additional assumptions by the user.

7See Appendix 2.2 for simulation details.
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Figure 1: Data generating processes under (a) completely unmeasured confounding, (b) par-
tially measured confounding, and (c) perfectly measured confounding, sometimes referred to
as “selection [into treatment] on observables.”

meaning that a college education increases the probability of voting by 13 percentage points.

Attempting to adjust for observed X by taking

∑
x

[
Pr(Y = 1 | D = 1, X = x)− Pr(Y = 1 | D = 0, X = x)

]
Pr(X = x)

yields a biased estimate of 0.72, or 72 percentage points, due to the presence of additional

unmeasured confounding by U .

Researchers faced with this challenge are often confronted with an unpalatable choice.

One option is to act as if the problem does not exist and report estimates for the effect of

education under a “selection on observables” (SOO) assumption that rules out the existence

of unobserved confounders, as in Figure 1c, perhaps supplemented with a post-hoc sensitivity

analysis. However, scholars with substantive expertise in the area may find it difficult to argue

that the observed parental SES X is the only factor that influences college education and

voting, and they may feel uncomfortable making claims that are premised on this argument.

Those preferring this cautious approach are ill-served by the current state of applied causal

methodology, which too often seeks to shoehorn research projects into existing frameworks,

such as the SOO paradigm, for the sake of reporting an estimate—regardless of whether the

premises underlying that estimate are substantively defensible. Given current practices, it may

seem that the only other options are to shift focus to a different but more feasible question

other than the one that originally motivated the data collection—such as the descriptive

correlation between education and voting—or to abandon the project entirely.
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Our alternative approach using autobounds proceeds as follows. To begin, the analyst

states her assumed causal model of the world, the DAG of Figure 1b, using the Python

programming language (an implementation in the R language is in early development).

# load package
from autobounds import *
# define each arrow in fig 1b, flagging variable U as unobserved
confounding_model = DAG("D -> Y, X -> D, X -> Y, U -> D, U -> Y", unob = "U")
confounding_problem = causalProblem(confounding_model)

Running causalProblem creates an object that will eventually hold all information available

to the analyst. Upon creation, this object holds the causal graph over treatment D, outcome

Y , observed confounder X, and unobserved confounder U ; unless otherwise specified, observed

variables are treated as binary and unobserved variables are allowed to be continuous or high-

dimensional. This allows autobounds to implicitly define the principal strata described in

Section 2.1.

The researcher then defines her causal question—the estimand—in this case, the ATE.

# estimand is ATE of independent variable D on dependent variable Y
confounding_problem.set_ate(ind="D", dep="Y")

The set ate method then defines the quantity of interest, in this case the ATE of the inde-

pendent variable D, college education, on the dependent variable Y , voting. Using additional

arguments, this shorthand method can also be used to specify estimands that are conditional

ATEs; a more general alternative, set estimand, offers a flexible syntax for defining other

quantities of interest.8

import pandas
# load observed data with D, X and Y columns, one row per unit
confounding_data = pandas.read_csv("confounding_data.csv")
# inference argument preps autobounds to compute confidence intervals
confounding_problem.read_data(raw=confounding_data, inference=True)

8The set ate method is given for ease of use; for this common use case, it provides a shortcut that is
equivalent to with respect to(confounding problem): followed by either set estimand(E("Y(d=1)") -

E("Y(d=0)")) or set estimand(p("Y(d=1) = 1") - p("Y(d=0) = 1")). More generally, by writing E and
p functions of potential outcomes, users can formulate arbitrarily complex quantities for use in estimands and
assumptions. For additional documentation and worked examples, see appendices.
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Next, the analyst loads the raw data from a .csv file—in which each row represents one

unit and columns are given for X, D, and Y—using the standard Python package for data

manipulation, pandas. The read data method automatically tabulates observable strata in

the data, e.g. the proportion of individuals who are college-educated voters with high parental

SES (X = 1, D = 1, and Y = 1), the proportion who are college-educated voters with low

parental SES (X = 0, D = 1, and Y = 1), and so on. This provides information the algorithm

can use to rule out possible values of the estimand.9 It then translates this observed data

distribution into implied constraints on the sizes of each principal stratum. See Appendix A,

Equation (12) for a formal statement of this problem.

Finally, the following code produces sharp bounds on the ATE—the narrowest bounds

possible absent further data or assumptions.10

# compute bounds, verify sharpness, and conduct statistical inference
confounding_problem.solve(ci=True, nsamples=1000)

The analyst finds that autobounds outputs an estimated interval of [−0.165, 0.835]. Es-

timated 95% confidence intervals on the bounds, (i.e. statistical uncertainty due to sampling

error) are also reported as [−0.183, 0.861. Confidence bounds are computed using the methods

described in using the method described in appendices C.2.1 and E.4.5. These bounds cover

the true ATE, but they are quite uninformative: the worst- and best-case scenarios are far

apart, so the range of possible answers to the causal question is wide, and they cross zero, so

the sign of the effect is unidentified.11

Not all may be lost, however. These bounds are wide because they are nonparametric:

among other implications, this means that they allow for any possible way that observed

confounders X and unobserved confounders U might interact with each other and with treat-

9An alternative is to provide a data frame with one row per combination of possible values for X, D, and
Y columns, with a third column prob containing the frequencies of each combination.

10The bounds are then computed with the solve method, which utilizes the SCIP Optimization Suite
(Bolusani et al., 2024) via the PySCIPOpt interface (Maher et al., 2016).

11In fact, without further assumptions, it has been shown that the bounds on the ATE, given confounding
between a binary treatment and a binary outcome, will always contain zero because they are always of width
one (Robins, 1989; Manski, 1990b). Perhaps surprisingly, this remains true when adjusting for observed
confounders as well, absent further assumptions.
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ment D. However, expert knowledge might permit the analyst to add an assumption which

indirectly limits the impact of this issue. The analyst may make the following observation:

treatment is indeed confounded, but people who come from families with higher parental SES

have a higher counterfactual propensity to vote, regardless of their education. This is directly

grounded in existing research on voting behavior, which has identified the relative cost of

voting as a key factor influencing turnout decisions (Li et al., 2018). Because individuals

from high-SES families have greater resources available, the costs associated with voting—e.g.

transportation, lost wages—represent a relatively lower share of those resources and thus are

likely to be perceived as a lesser obstacle, on average. Moreover, high-SES parents are argued

to foster politically rich home environments, further increasing political participation later in

life (Verba et al., 2005).

Therefore, we might assume those with means would, on average, vote more often than

those without, given any counterfactual level of education. Formally, the analyst assumes

E[Y (d) | X = 1] ≥ E[Y (d) | X = 0] for each d. (1)

This notion, which was first proposed by Manski and Pepper (2000) in the instrumental-

variable context, is known as a monotone response assumption across subgroups.

In autobounds, this assumption can be implemented as follows:

from autobounds import respect_to
# shorthand to facilitate repeated statements about this problem
with respect_to(confounding_problem):

# define key quantities
turnout_if_college_in_highSES = E("Y(D=1)", cond="X=1")
turnout_if_college_in_lowSES = E("Y(D=1)", cond="X=0")
turnout_if_nocollege_in_highSES = E("Y(D=0)", cond="X=1")
turnout_if_nocollege_in_lowSES = E("Y(D=0)", cond="X=0")
# state the assumption of monotone response across subgroups
add_assumption(

turnout_if_college_in_highSES, '>=', turnout_if_college_in_lowSES
)
add_assumption(

turnout_if_nocollege_in_highSES, '>=', turnout_if_nocollege_in_lowSES
)
# compute bounds, verify sharpness, and conduct statistical inference
solve(ci=True, nsamples=1000)
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Under this assumption, the bounds become [0.101, 0.841] (95% CI [0.035, 0.859]). Thus,

the analyst is able to estimate informative bounds and sign the effect, while keeping her

research question the same, and avoiding untenable assumptions.

We emphasize that in practice, these restrictions should not be chosen arbitrarily; rather,

they should be based on subject knowledge or evidence from prior work. An ideal work-

flow would state these assumptions once the causal estimand is defined, perhaps even in a

pre-registration step. We provide these assumptions and the corresponding results merely to

illustrate the flexibility of the algorithm in accommodating contextual information in a rela-

tively simple example. In what follows, we show how autobounds can also be used to relax

assumptions in published analyses that use more complex research designs, often while still

returning informative results.

3 Applications

In this section, we replicate and extend several published papers to demonstrate how the

assumptions of commonly used research designs can be relaxed or abandoned using auto-

mated partial identification while still allowing for useful inferences. All code to execute these

replications appears in the Appendix.

We note that our intention is not to validate or invalidate any of these published studies.

We replicate only select results from any given study, whereas each of the original papers

also offers other evidence to support its claims. In addition, we sometimes make specification

changes, such as discretizing variables, to implement autobunds. These exercises are meant

to show how our approach can work in practice, with real data, in order to investigate the

robustness of results when key assumptions are added, dropped, or partially relaxed.
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Figure 2: IV DAGs. Panel (a) depicts the simple IV setting of Angrist et al. (1996). In this
setting, if monotonicity of Z to D is assumed (no defiers), the local ATE on the outcome Y ,
among those that “comply” with encouragement, is point identified. Panel (b) represents the
same DAG with an additional arrow from Z to D, which indicates a violation of exclusion
restriction.

U

Z D Y

(a)

U

Z D Y

(b)

3.1 Instrumental Variables

When selection on observables cannot be credibly assumed—i.e., when treatment is not as-

if randomly assigned, even conditional on observed covariates X—a popular identification

strategy is instrumental variables analysis. With this approach, treatment D and outcome Y

still share a common unobserved confounder, U , but analysts locate an instrumental variable,

Z, that “encourages” treatment to occur as-if randomly, which allows for the identification of

a local average treatment effect of D on Y (Angrist et al., 1996). This data-generating process

(DGP) is represented in the left panel of Figure 2.

As shown in Angrist et al. (1996), the traditional instrumental variables strategy will re-

cover the local average treatment effect among “compliers” (LATE)—units which respond to

the “encouragement” provided by the instrument as instructed—if several assumptions hold.

These conditions include (i) ignorability of Z, satisfied if the instrument is as-if randomly

assigned; (ii) a non-null effect of Z on X, also known as “relevance”; (iii) an exclusion re-

striction, or the absence of a direct effect of Z on Y ; and (iv) monotonicity, or the absence

of “defiers” that behave inversely to instructions.12 As Balke and Pearl (1997) shows, even

when monotonicity is not assumed, it is possible to calculate sharp bounds for the ATE using

a linear-programming approach. autobounds generalizes this approach allowing for the cal-

culation of sharp bounds not only for the ATE, but also for nonlinear quantities such as the

12This result also assumes a stable unit treatment value assumption (SUTVA), which we employ throughout
this paper.
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LATE,13 and indeed for essentially any estimand. Moreover, this autobounds-based estimator

will produce valid results both with and without monotonicity assumptions. In cases where

stronger assumptions make the estimand point identifiable (e.g., the LATE under monotonic-

ity, Angrist et al., 1996), the interval of possible answers from autobounds collapses so that

the best-case upper bound is exactly equal to the worst-case lower bound.

Besides calculating bounds for estimands, autobounds also tests all empirical implications

of the theoretical model (user-supplied assumptions). In the IV case, these observable impli-

cations are known as the instrumental inequalities (Pearl, 1995b; Bonet, 2001). For a valid

instrument Z, discrete treatment D, and discrete outcome Y , the exclusion restriction implies

that

max
d

∑
y

[
max
z

Pr(Y = y,D = d|Z = z)
]
≤ 1. (2)

must hold. If data fails to satisfy it, then analysts may conclude there is a violation of the

exclusion restriction—e.g. a direct Z → Y effect, confounding between Z and some other

variable.

Finally, autobounds can quantify the consequences if key assumptions, like monotonic-

ity and the exclusion restriction, are violated to varying extents. In particular, we can use

autobounds to recover sharp bounds on causal estimands after allowing for a given share of

units to violate these assumptions. We demonstrate these features by replicating and ex-

tending an IV study in Section 3.1.1. In Section 3.1.2, we reexamine a second IV study to

show how autobounds can alert researchers to faulty assumptions by testing whether their

empirical implications are violated.

13The ATE is a linear function of the principal strata sizes, as it is equal to E[Y (d = 1) − Y (d = 0)] =
Pr(Y-helped)−Pr(Y-hurt), where the group with outcomes “helped” by treatment is the group where Y (d =
1) = 1 and Y (d = 0) = 0; conversely, the group with outcomes “hurt” by treatment Y (d = 1) = 0 and Y (d =
0) = 1. (See Footnote 4 for additional discussion in a slightly different context.) In contrast, the LATE is a non-
linear function of the principal strata sizes because conditioning creates a fraction that cannot be eliminated:
E[Y (d = 1)−Y (d = 0)|D-complier] =

[
Pr(Y-helped, D-complier)−Pr(Y-hurt, D-complier)

]
/Pr(D-complier).
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3.1.1 Replication and Extension of Coppock and Green (2016)

In a well-known get-out-the-vote (GOTV) experiment, Gerber et al. (2008) tested whether

various forms of social pressure caused people to turn out in a 2006 primary election in

Michigan. Specifically, voters were randomly informed that their turnout activity would be

monitored by researchers and, in one treatment arm, that their neighbors would be informed

as to whether they voted. Subsequently, Coppock and Green (2016) extended this study using

the instrumental variables framework to test whether voting in one election affects the chances

of voting in subsequent elections. In this revised setup, the initial social pressure intervention

is treated as a binary instrument (encouragement, Z) to vote in the contemporaneous 2006

primary election (which is conceptualized as the treatment, D), but the outcome of interest is

whether people vote in a subsequent general election later that year (Y ). Substantively, this

re-analysis sought to test whether voting is “habit forming,” e.g. whether the experience of

voting in the primary election at t increases the probability of voting in subsequent elections

from t+ 1 onwards. In Figure 15, we show how this analysis can be replicated and extended

in merely 10 lines of autobounds code.

Importantly, the assumptions of the IV design imply that habit formation is the only

mechanism through which social pressure would affect subsequent turnout in election t + 1.

However, as Davenport et al. (2010) notes, another mechanism that could explain subse-

quent turnout is “social learning,” whereby the content of the encouragement causes people

to internalize the civic norm of voting (Bandura and Walters, 1977). If this mechanism were

operating, it would constitute a violation of the exclusion restriction—a way in which the

encouragement directly influences subsequent turnout that is not mediated by contempora-

neous turnout—invalidating the IV design as a means to identify the local average treatment

effect among compliers. This is particularly of concern due to the memorable nature of the

“neighbors” social-pressure encouragement—delivered immediately before to the primary in

August, it could potentially remain salient enough to directly affect some voting decisions in
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the general election held just three months later.

It is straightforward to gauge the sensitivity of results to violations of this assumption

using autobounds. We start by describing a DAG of the form shown in Figure 2(b), allowing

for a direct effect between the instrument (here, whether individuals received the “neighbors”

treatment) and the outcome. Then, we add code which stipulates the hypothesized maximum

share of units for whom the exclusion restriction may be violated (if this share is hypothesized

to zero, then we are effectively re-imposing the exclusion restriction, but if it is greater than

zero, we are relaxing it). Finally, we recompute bounds on the estimand when allowing for

some violation of the assumption.14 After setting up the causal diagram, loading data, and

stating the monotonicity (no-defiers) assumption, the following lines of Figure 15 show how

to relax the potentially problematic exclusion-restriction assumption:

with respect_to(gotv_problem):
# define group for which exclusion restriction is violated
p_excl_restr_violation = edge_is_active("Z -> Y")
# assume that the size of this group is limited
add_assumption(p_excl_restr_violation, "<=", 0.01)

By varying this hypothesized maximum share of exclusion-restriction violators to many values

between 0 and 1, we can produce a full sensitivity curve describing the empirical consequences

of any degree of violation.

The bottom left panel of Figure 4 shows the results of this exercise when the complier

group is estimated to represent 8% of the population (based on the first-stage estimate, which

recovers the complier-group size under the monotonicity assumption). We view these results

as indicating extreme sensitivity to the exclusion restriction: the LATE cannot be signed if

the social-pressure encouragement mailed in Aug. 2006 directly influenced turnout in Nov.

2006 for more than 1% of units. However, we recognize that others may disagree, especially

in other settings where 1% is an implausibly high rate for exclusion-restriction violations.

(Substantive knowledge of the topic under study is crucial when interpreting the output of

14Specifically, we focus on the effect of the “neighbors” treatment on Nov. 2006 general election turnout
reported in column 2 of Table 1 in Coppock and Green (2016). We note that the original paper contained
evidence from a number of other IV models and regression discontinuity analyses to study this question.
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this algorithm.) Regardless, the flexibility of our approach allows for a precise discussion

about the plausibility of a research design and the robustness of its conclusions, rather than

the informal arguments typically used in discussions of identifying assumptions.

The autobounds algorithm also allows us to easily explore alternative estimands, such as

the ATE. The top left panel of Figure 4 shows that with the observed compliance rate in the

data, the ATE can never be signed. In the following three columns of the plot, we show how

the sensitivity of results to exclusion-restriction violations changes as compliance rates grow

higher, for both the LATE and the ATE, using naturalistic simulations that we generate by

reweighting the original dataset. The results show that as compliance rates increase, bounds

become more narrow, making it easier to sign the effect. This is especially apparent in the

bottom row of the plot, which shows bounds on the LATE. Intuitively, this is because a

fixed number of exclusion-restriction violators (say, 1% of the population) can “explain away”

much of the change in outcomes when there are not many compliers and the reduced form is

therefore small. As the number of compliers grows larger, the instrument will induce bigger

shifts in the outcome, and the fraction of those shifts that can be explained away by the 1% of

exclusion-restriction violators will be relatively smaller. In addition, we see that under high

rates of compliance, the bounds on ATE and LATE are highly similar. This also makes sense,

because under perfect compliance, the two quantities are identical.

These results show how IV results can be fragile in a way that current best practices do

not adequately emphasize. Practitioners are typically advised to proceed with IV analysis

if the first stage is statistically strong—according to a common rule of thumb, if the null

hypothesis of no Z → D effect can be rejected with an F -statistic greater than 10. In the

case of the model in Coppock and Green (2016) reanalyzed here, the first-stage F-statistic is

753, indicating an instrument that is statistically extremely strong, due to the large sample

size. However, our results show that when compliance rates are relatively low, IV results can

still be causally fragile, in the sense that they remain vulnerable to minor violations of the
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Figure 3: Sharp Bounds on the LATE Under Increasing Violations of the Exclu-
sion Restriction. The plot below shows sharp bounds on the LATE of an initial GOTV
intervention on turnout in a future election (solid lines are estimated bounds, dashed lines are
95% confidence intervals on those bounds). The plot shows that if 0% of units are assumed
to exhbit a direct effect between instrument and outcome (i.e. if the exclusion restriction is
assumed to hold perfectly), the LATE is point identified. However, assuming that more than
1% of units exhibit a direct effect—in violation of the exclusion restriction—the bounds on
the LATE can no longer be signed.

exclusion restriction. Conversely, instruments which induce high rates of compliance can be

more causally robust to violations of this key assumption.

3.1.2 Replication and Extension of Kocher et al. (2011)

Next, to illustrate how autobounds can alert users to faulty assumptions, we examine Kocher

et al. (2011), which seeks to estimate the effect of aerial bombing during the Vietnam War by

the U.S.-backed Republic of Vietnam (RVN) of civilian hamlets on local control of hamlets by

the Viet Cong. The paper concludes that bombing civilian targets increases the probability

of insurgent control; in other words, the tactic backfires on the aggressor. The most apparent

challenge in identifying this effect, which the paper addresses with a number of analytic ap-

proaches, is that whether a hamlet is bombed is generally not random but rather is determined

by military strategy. One approach used is an IV design in which prior insurgent control—a

lagged outcome—is regarded as an encouragement for the treatment of aerial bombing.
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Figure 4: Sharp Bounds on the ATE/LATE under Increasing Compliance Rates.
The green shaded areas highlight regions where the sign of the effect is identified. The com-
pliance rate in the original data is 0.08, we synthetically reweighted the raw data to generate
datasets with higher compliance rates.
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To preview our findings, autobounds reveals that the instrumental-variables assumption

set is falsified in this context. In other words, their empirical implications are not satisfied,

suggesting that the variables used are not valid instruments.15 We emphasize that we focus

on one particular model specification from Kocher et al. (2011). It is therefore possible the

overall conclusions of the paper still hold based on other evidence provided in Kocher et al.

(2011). Further, we make a number of specification choices that are distinct from (though

conceptually consistent with) the analysis in Kocher et al. (2011).16

In one set of analyses, the study employs an IV design in which the instrument, Z, is insur-

gent control of a hamlet as measured in July 1969; the treatment, D, is an indicator of whether

any bombs were dropped within a two-kilometer radius of the hamlet; and the outcome, Y ,

is control of the hamlet in December 1969. It further uses a number of control variables, X,

such as terrain roughness, population, and control of the hamlet at an intermediate point in

time (September 1969). The validity of this strategy has a number of requirements, includ-

ing that past control of a hamlet does not have a direct effect on future control (there is no

Z → Y arrow). This is a questionable assumption, because control in period t − 1 almost

certainly influences control in t, e.g. by reinforcement of fortifications.17 However, even if this

were true, the design also requires that there are no unobserved common causes, such as the

sympathies of hamlet residents, that jointly influence past and future control (i.e. there are no

Z ← U → Y confounders). Kocher et al. (2011) argue that this conditions is met: “there are

no unobserved hamlet-specific variables that affected insurgent control in July, August, and

December 1969, but not in September of that year as well,” (p. 212, emphasis in original).

We will use autobounds to first test the observable implications of these assumptions—i.e.,

15Consistent with this finding, the two-stage least squares results in Table 5 of Kocher et al. (2011) suggest
that the binary treatment would have a 9-point effect on the outcome—an impossibility when the outcome is
measured on a 5-point scale.

16See Appendix D for details on our operationalization.
17One possible reason that the instrumental variable design might nonetheless remain valid is if hamlet

control follows a Markov process: i.e., if control in t−2 (July 1969, Z) influences control in t (December 1969,
Y ) only through control in t− 1 (September 1969, in X). If this were true, then adjusting for hamlet control
in September 1969 would be sufficient to block any direct effect.

22



the instrumental inequalities given in Equation 2. We supply the assumed causal diagram—a

conditional IV graph in which the 5-valued instrument Z (prior insurgent control) influences

the binary treatment D (aerial bombing) which in turn influences Y (future insurgent con-

trol), with background variables X that influence all of the above. Following the standard

autobounds workflow, we then formally state what appears to be the implicit estimand of

Kocher et al. (2011), the LATE. We do not impose the assumption of monotonicity, so if

autobounds detects a violation of assumptions, then it is either exclusion or randomization

that must be violated.18 Finally, we supply the data and start the computation.

Based on this information, autobounds reports that the IV assumptions are falsified:

their observable implications are violated, i.e., the data distribution is inconsistent with the

hypothesized IV data-generating process (Yang et al., 2014). To probe the intuition behind

this result, we manually examined groups of hamlets that exactly match on a coarsened version

of the control covariates, X̃ (Branson and Keele, 2020). For example, consider the 127 highly

developed, high-population hamlets that are located in low-roughness terrain that is far from

the border. Of these well-off villages, the vast majority were untouched in September 1969

(D = 0)—only two were subject to aerial bombing (D = 1). Thus, within this subgroup,

there is virtually no variation in the causal factors that influence the outcome, X̃ and D.

While there is large variation in the instrument—for example, 10 hamlets were under

full government control, and 14 were under moderate insurgent control—the IV assumptions

imply that this variation should be nearly independent of the outcome variable, for two reasons.

First, by holding X̃ fixed within these 127 hamlets, the instrument Z should not be confounded

with the outcome Y . And second, the instrument Z should not have an effect on the outcome Y

except through variation induced on the treatment D, which in this case is nearly nonexistent.

This is the intuition behind the instrumental inequalities given in Equation 2—under a valid

IV design, the potential outcomes Y (d = 0) and Y (d = 1) must be independent of Z.

18The absence of a monotonicity assumption means that the LATE will not be point-identified. In practice,
the assumptions will be falsified regardless of what specific estimand is chosen here.
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The observed data is clearly inconsistent with this notion: for example, no hamlets with

Z = 1 (total government control in July 1969) or Z = 4 (moderate insurgent control in July

1969) were bombed, which under the IV assumptions suggests that the distribution of Y

(control in December 1969) should be identical between the Z = 1 and Z = 4 groups. In fact,

their distributions of Y do not overlap at all: the Z = 1 group stays almost entirely under full

government control (Y = 1) with one hamlet slipping to moderate government control (Y = 2),

while all hamlets in the Z = 4 group either end up in contested control (Y = 3) or remain in

moderate insurgent control (Y = 4).19 This suggests either that there is Z − Y confounding

or that there is a Z → Y direct effect that does not flow through D. When evaluating

the null hypotheses suggested by a X̃-conditional version of the instrumental inequalities

from Equation 2, we reject the null at p < 0.001 in this particular group of 127 hamlets.

When using Fisher’s method for combining p-values across different groups of coarsened-

exact-matched hamlets, we obtain an overall pFisher < 0.001 as well, decisively rejecting the

overall null hypothesis that the Vietnam aerial bombing case is a valid IV design.20 See

Figure 16 in the appendix for the Python code for the autobounds implementation.

3.2 Difference in Differences

Difference-in-differences (DiD) is another widely used identification strategy designed to neu-

tralize the influence of unobserved confounding. In the simplest case, the DiD strategy involves

comparing the outcomes of two groups of observations (treatment and control) in two time

19In general, we only observe Y (d = 0) among the subset of units that actually receive D = 0, and because
p(Y (d = 0)|D = 0) can differ from p(Y (d = 0)) due to D-Y confounding, the IV inequalities implicitly engage
in best-/worst-case reasoning about the remaining units with D = 1. However, in this particular case, none
of the well-off villages with Z = 1, Z = 2, and Z = 4 were bombed—i.e., p̂(D = 0|X̃ = x̃, Z ∈ {1, 2, 4}) = 1.
Thus, in this subgroup, we are able to directly test whether Y (d = 0) ⊥⊥ Z using a χ2 test.

20Specifically, we identified groups of coarsened-exact-matched hamlets containing 100 units or more. Within
these 16 levels of X̃, we tested the null hypothesis that Y (d = 0) ⊥⊥ Z as follows. First, among units with
D = 0, we constructed a 5 × 5 contingency table of Y (d = 0) and Z. Then, among units with D = 1—
for which Z is known but Y (d = 0) is not—we allocated hypothetical Y (d = 0) values that, if true, would
result in the lowest χ2 test statistic. We conduct a χ2 test of independence for this hypothetical contingency
table, representing the most conservative test that is consistent with the observed information. Among the
18 resulting tests, half were significant at the conventional 95% confidence level: we obtained six p-values
below 0.001, one more below 0.01, and an additional two below 0.05. Combining these independent tests
by Fisher’s method, which states that −2

∑J
j=1 log(pj) ∼ χ2(J) under the overall null hypothesis, yields an

overall pFisher < 0.001.
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Figure 5: Difference-in-differences DAGs. (a) Standard DiD model. (b) DiD with brack-
eting on covariates.
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periods (before and after some intervention is applied to the treatment group only). The aver-

age pre-post difference in outcomes is computed within both groups, and then the treatment

difference is compared to the control difference.

This comparison can identify the average treatment effect among the treated (ATT), under

the key identifying assumption of parallel trends—i.e., that in the absence of any intervention,

the pre-post differences in both treatment and control groups would be equal, so that average

outcomes would move in parallel. This assumption is generally regarded as not directly

testable, since by definition the treatment group’s counterfactual trend in the post period

cannot be observed. Researchers typically examine pre-trends to see if outcomes were moved

in parallel prior to the intervention, but such tests are not dispositive and are of limited use

when extensive pre-treatment data is not available.

In what follows, we use autobounds to demonstrate what can be learned from these data

when the parallel trends assumption is relaxed.

3.2.1 Replication and Extension of Schubiger (2021)

We next replicate and extend Schubiger (2021), which relies in part on a DID strategy to esti-

mate the effect of exposure to state violence on counterinsurgent mobilization in the Peruvian

Civil War. As the study states, “The core challenge to answering this question lies in the fact

that even though state violence was highly unpredictable during the counterinsurgency cam-

paign of 1983–85, targeting did not occur at random, thus being potentially related to other
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important determinants of communities’ propensity for counterinsurgent collective action,”

(p. 1388).

In this study, the units of analysis are centro poblados, “settlements of various sizes and

types, such as villages and towns,” some of which are targets of state violence. This analysis

examines two time periods: 1983–1985, when human rights violations and other state violence

were imposed on various towns and villages in response to a counterinsurgency, (the pre

period); and 1986–1988, during which time some localities employed “self-defense committees”

which engaged in violent clashes with the state (the post period). The analysis examines two

groups of localities: those that experienced state violence in the pre-period (the treatment

group) and those that did not (the control group). The outcome is a binary indicator of

“whether a given centro poblado was affected by violence against or perpetrated by self-defense

committees in the period after the counterinsurgency campaign (1986–88)” (1390). However,

as Schubiger (2021) notes, “As there is only one pretreatment period, pretreatment trends

cannot be explored in detail. . . ” (p. 1395).

We demonstrate how autobounds can be used to relax the parallel trends assumption

by replicating and extending Schubiger (2021). The DAG of Figure 5a is one of several

causal graphs that is consistent with the DiD design. As the graph shows, the treatment,

D, the outcome in the pre period, Yt=0, and the outcome in the post period, Yt=1, are all

caused by a common sent of unobserved confounders, U , which do not evolve in time. In

other words, consistent with the traditional representation of DiD, the treatment and control

groups differ in unobserved ways, and in turn, their levels of the outcome in all periods are

not the same. However, a standard DiD analysis also imposes a functional restriction on

the DAG, namely that the effect of U on Yt does not evolve with t. In other words, absent

treatment, the evolution of the outcome from pre- to post- treatment would be equal across

groups. Mathematically, we assume that

Assumption 3.2.1 (Parallel Trends). The trend among the treated group, E[Yt=1(d = 0) −
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Yt=0(d = 0) | D = 1] is equal to the trend among the control group, E[Yt=1(d = 0)− Yt=0(d =

0) | D = 0].

Translating this into autobounds is also straightforward; Figure 17 shows how users input

the assumed causal graph, data, and estimand. The parallel-trends assumption can then be

stated as follows:

# for clarity in code, we write Y_t0 as Ya and Y_t1 as Yb
with respect_to(peru_problem):

trend_treated = p("Yb(D=0)=1", cond="D=1") - p("Ya=1", cond="D=1")
trend_control = p("Yb(D=0)=1", cond="D=0") - p("Ya=1", cond="D=0")
add_assumption(trend_treated, "==", trend_control)

Two estimands were analyzed. For the ATT, we obtained estimates in which the lower and

upper bounds collapse to a point estimate of 0.047 (95% CI [0.028, 0.069]). This is exactly the

result obtained by Schubiger (2021). However, autobounds also allows us to calculate bounds

for the ATE, and when we do, we are able to sign the effect as positive: [0.001, 0.956] (95%

CI [0.000, 0.959]). The parallel-trends assumption is crucial to these conclusions, as results

without it are far less informative: for the ATE, bounds would have been [−0.044, 0.956]

(95% CI [−0.048, 0.959]), and for the ATT, [−0.948, 0.052] (95% CI [−0.961, 0.077]). This

also demonstrates a key feature of autobounds: the ability to easily obtain informative results

about multiple estimands (i.e. multiple research questions) under multiple assumption sets.21

Finally, we relax the classic parallel-trends assumption using a type of bracketed trends

(Campbell, 2009; Hasegawa et al., 2019; Ye et al., 2024), incorporating the background covari-

ate X depicted in the graph of Figure 5b. In contrast to the parallel-trends assumption, which

states that background changes in the treated group’s outcome are exactly balanced with with

those in the control group, the bracketed-trends assumption say something weaker. Specifi-

cally, it states that these unobserved background changes in the treated group are sandwiched

somewhere between the observed changes in groups which did not receive treatment. In other

21When assuming parallel trends, results for the ATE and ATT are identical regardless of which DAG is
used; this is because the parallel trends assumption implies that the covariatesX are irrelevant after accounting
for their contribution to the pre-treatment outcome.
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words, if one control group evolves faster than the treated group, and another evolves more

slowly, then we can infer that the treated group’s counterfactual would have fallen somewhere

in between. To calculate the brackets, we use a single covariate: whether there was prior

insurgent violence—i.e., whether the treatment affected that location in a previous period.

Formally, if ∆(D = 1) := E[Yt=1(d = 0) − Yt=0(d = 0) | D = 1] is the treated group’s trend,

and ∆(D = 0, X = x) := E[Yt=1(d = 0) − Yt=0(d = 0) | D = 0, X = x] is the trend in the

subset of the control group with X = x, then the bracketed trends assumption is as follows:

Assumption 3.2.2 (Bracketed Trends). min{∆(D = 0, X = 0),∆(D = 0, X = 1)} ≤ ∆(D =

1) ≤ max{∆(D = 0, X = 0),∆(D = 0, X = 1)}

Under this assumption, we find that the bounds for the ATT are [0.006, 0.046] (95% CI

[−0.013, 0.065]), and the bounds for the ATE are [−0.042, 0.955] (95% CI [−0.044, 0.958]). As

this final example shows, replacing the relatively restrictive parallel trends assumption with

the more lenient bracketing trends assumption, analysts are still able to estimate the sign of

the ATT as positive, though statistical significance is lost; the bounds for the ATE no longer

indicate the direction of this effect, as the upper and lower bounds cross zero. This shows

that in situations where parallel trends are thought to be violated, it is still possible to recover

substantively informative results in a difference-in-differences setting using automated partial

identification.

3.3 Selection Bias

Selection bias is often inherent to the data sources used by social scientists. A particularly

difficult problem arises when treatment status determines whether units are observed or not,

and a large literature has grappled with the statistical bias that can result from this form

of post-treatment conditioning (Rosenbaum, 1984; Acharya et al., 2016; Nyhan et al., 2017;

Blackwell, 2013).

In one recent example, Knox et al. (2020) examines the problem of estimating racial bias
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Figure 6: Racial Discrimination in Police Use of Force. D represents the minority
status of an encountered civilian. M is the mediating decision of whether an officer chooses
to detain the civilian. Y is use of force.

U

D M Y+

in the use of force by police using only data on encounters in which police choose to detain

individuals. As the paper shows, because the race of civilians involved in police encounters

(the treatment, D) very likely affects whether individuals are detained in the first place (an

indicator for whether a person is stopped by police,M), then comparing the rates of force used

against white and nonwhite civilians among the subset of encounters that involve a detainment

leads to underestimates of racial bias in the use of force, absent implausible assumptions.

While the original paper examined the use of various levels of discriminatory force against

both Black and Hispanic civilians (compared to white civilians), for simplicity, this reanalysis

focuses on a binary indicator for the use of any force at all (Y ) and on the Black-white

comparison only.

The source of the confounding that results from this form of sample selection can be seen

in Figure 6. As the DAG shows, even if the analyst is able to adjust for all common causes

of the treatment and outcome (D and Y ), and of the treatment and mediator (D and M)—

equivalent to rendering encounters comparable before the officer makes the decision to initiate

a stop—conditioning on the mediator induces “collider bias” (Pearl, 2009), allowing common

causes of stopping (M) and the use of force (Y ) to confound comparisons. Theoretically,

these unobserved confounders, represented collectively by U , could be factors never recorded

in police administrative data such as the officer’s mood at the time of the encounter.

To address this obstacle, Knox et al. (2020) analytically derives nonparametric sharp

bounds on several causal estimands corresponding to racial bias. In general, these estimands

consider the counterfactual substitution of a different individual of differing racial identity into
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an otherwise similar police-civilian encounter, and they compare the average counterfactual

rates of force between two encounters involving two racial/ethnic groups of civilians. To

sharply bound these estimands given available administrative data, Knox et al. (2020) appeals

to four assumptions. We focus here on two in particular.22

The first assumption we reexamine is “mediator monotonicity,” or the assumed absence of

anti-white police stops:

Assumption 3.3.1 (Mediator Monotonicity). M(1) ≥M(0).

This assumption states that there are no encounters in which a stop would occur if a

civilian was white, M(d = 0) = 1, but would not occur, counterfactually, if a civilian was

nonwhite, M(d = 1) = 0. This could be violated if, for example, white civilians were more

likely to be stopped, all else equal, when walking in majority Black neighborhoods, perhaps

because they looked out of place.

Next, Knox et al. (2020) make an assumption about the average levels of force that would

be applied, counterfactually, in two different types of encounters. The first are “always stops,”

or scenarios where officers would stop any civilian regardless of race, M(d = 0) =M(d = 1) =

1, e.g. armed robberies. The second are “racial stops,” or scenarios in which officers would

exercise discretion by stopping a minority civilian, M(d = 1) = 1 but would not stop a white

civilian, M(d = 0) = 1—a pattern that might plausibly occur in, e.g., jaywalking incidents.

Assumption 3.3.2 (Relative Non-severity of Racial Stops).

E[Y (d,m) |M(d = 1) = 1,M(d = 0) = 1] ≥ E[Y (d,m) |M(d = 1) = 1,M(d = 0) = 0]

This assumption holds if, for any race of civilians counterfactually inserted into the en-

counter, d, the average rate of force used during police encounters is larger in “always stop”

22In addition to the assumptions that we relax and abandon in this reanalysis, Knox et al. (2020) imposes
assumptions about the absence of unreported force and the ignorability of civilian race; see original paper for
details. In addition, the bounding approach in Knox et al. (2020) allows analysts to specify the severity of
bias in the initial decision to stop civilians to obtain sharp bounds for that scenario. The paper shows the
severity of stopping bias can be lower bounded using a standard outcome test (Knowles et al., 2001), and
estimates that at least 32% of stops of Black civilians would not have occurred had similarly situated white
civilians been encountered in the New York City case. In keeping with this result, we specify the parameter
ρ indicating racial bias in stopping at 0.32 in the replication below.
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encounters than in “racial stop” encounters where nonwhite civilians would be discrimina-

torily detained. The logic behind this assumption is that the former class of encounters are

theorized to be serious incidents in progress, where officers have a duty to intervene by detain-

ing the civilian and, it s assumed, a higher likelihood of using force; in contrast, the second

class of encounters are discretionary scenarios in which officers have a choice about whether

to intervene and may allow racial bias to influence the decision.

While Knox et al. (2020) argues that these assumptions are plausible in the empirical

setting they examine (New York City in the 2000s, during which time the controversial “Stop,

Question and Frisk” tactic was prevalent (Mummolo, 2018)), others may question their va-

lidity. Moreover, it would be difficult to apply this bounding solution in other settings where

post-treatment selection occurs, even within the topic of policing—norms and data availabil-

ity vary tremendously across the roughly 18,000 state and local agencies in the U.S. In many

situations, a more flexible approach is needed. We use autobounds to relax and abandon

these assumptions, showing it is still possible to obtain informative results.

3.3.1 Replication and Extension of Knox et al. (2020)

While the original bounds in Knox et al. (2020) rely on the aforementioned assumptions,

autobounds lets us to relax or abandon them, see Figure 18 for the relevant code (pages

shorter than the proofs required in the original Knox et al. (2020) paper).23 The far left

result in Figure 7 shows analytic results based on prior work for the average treatment effect

among the detained, ATEM=1, among encounters involving Black and White civilians, with

estimated bounds of [0.106, 0.121] (95% CI [0.105, 0.122]).24. The second estimate shows

23For all numerical analyses, we assume that the probability of being stopped, P (M = 1), is at least 0.02 to
ensure numerical stability, as the denominator in the computation of the estimand ATEM=1 must be greater
than zero; when the denominator approaches zero too closely, numerical tolerance issues can lead to unreliable
results. Additionally, the confidence intervals shown here were computed without clustering, which makes
them substantially narrower than those reported in the original paper. Functionality to permit clustering in
autobounds is under development and is expected to be available soon.

24These results correspond to the Black-to-white comparison in Knox et al. (2020) under the “baseline
specification” without covariate adjustment.
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that when given the same information autobounds recovers identical bounds [0.106, 0.121]

(95% CI [0.105, 0.122]. In the third entry in the plot, we eliminate the assumption about

the relative severity of racial-stop and always-stop encounters. Somewhat surprisingly, the

resulting bounds widen only slightly to [0.074, 0.121] (95% CI [0.073, 0.122]). This means

analysts can still learn a great deal about the possible severity of racial bias in the use of force

in scenarios where this assumption fails.

However, the following estimate in the plot shows that mediator monotonicity is much

more consequential. When dropped, the bounds on the ATEM=1 become [−0.237, 0.207]

(95% CI [−0.239, 0.208]). However, as the final estimate shows, the effect can be signed as

positive by relaxing this assumption such that no more than 5% of stops of White civilians are

discriminatory, producing [0.020, 0.207] (95% CI [0.019, 0.208]). Under the plausible view that

anti-white bias in detainment, while possible, is relatively rare in the U.S., this revised analysis

shows the original results are robust to substantively large violations of the monotonicity

assumption.
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Figure 7: Sharp Bounds on Racial Bias in the Use of Force by Police Under Various
Assumptions. The figure displays sharp bounds on racial bias in the use of force (ATEM=1)
by police in New York City using data from Knox et al. (2020). autobounds replicates the
analytic result computed in the original paper. Dropping an assumption about the relative
severity of force across principal strata of encounters still allows anaylsts to bound racial bias
as positive. Dropping the assumption of no anti-White bias in stopping leads to uninformative
bounds, but relaxing this assumption to allow for no more than 5% of anti-White discrimina-
tory stops results in positive bounds on the causal estimand.

3.4 Mediation Analysis

In a mediation analysis, researchers seek to uncover how an intervention works. Specifically,

the goal is to identify an indirect channel by which a treatment affects the outcome. Medi-

ation analyses are used in many contexts including social and political sciences, psychology,

epidemiology and health services research (David P. MacKinnon et al., 2007; Richiardi et al.,

D M Y

U

Figure 8: Mediation data generating process. The total effect of D on Y may be partially
explained through M , the mediator. Obstacles to the validity of mediation designs are often
driven by U , which may jointly confound treatment, mediator, and outcome (or any subset
thereof). Additional observed confounders may exist but are not depicted. of treatment-
outcome, treatment-mediator and mediator-outcome relationships.
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2013; VanderWeele, 2015). Figure 8 contains a standard DAG for a mediation analysis. For

simplicity of exposition, we will work with the setting where variables on the main channel

D → M → Y are all binary. The ATE represents the total effect of D on Y , represented

by E[Y (d = 1) − Y (d = 0)] = E[Y (d = 1,M(d = 1)) − Y (d = 0,M(d = 0))].25. How-

ever, this estimand only tells us if D causes changes in Y , and is uninformative about the

role of M , i.e. the causal mechanism. Mediation analysis aims to decompose this total effect

of treatment into direct and indirect effects, which we will together refer to as mediated ef-

fects. The direct effect represents the influence of the treatment on the outcome that is not

mediated by the mediator(s) of interest (i.e. D → Y path in Figure 8), while the indirect

effect represents the influence that is transmitted through M , which represents the proposed

causal mechanism. To demonstrate the application of autobounds to mediation analysis,

we develop new partial identification results for the parallel design, introduced by Imai et al.

(2011), which is a design-based approach that enables mediation analysis under more plausible

identification assumptions. Importantly, the parallel design does not require the “sequential

ignorability” assumption—which in effect states that (a potentially unmanipulated) mediator

can be considered randomly assigned within each treatment group—and is considered one of

the strongest identifying assumptions in mainstream applied causal inference methods. We

focus on a recent application of the design in Acharya et al. (2018).

In this design, the researcher randomly assigns subjects to experimental arms, E, which

are carried out in parallel. In the natural arm, E = 0, treatment is randomized but the

mediator is not manipulated; thus, the mediator behaves naturally in response to the assigned

treatment. In the manipulated arm, E = 1, the researcher intervenes upon both treatment and

mediator. To better represent this design in causal graphical language, Figure 9 represents

each experimental arm using its own Single World Intervention Graph (SWIG, Richardson

25In a mediation setting Y (d) := Y (d,M(d)) is known as the composition assumption (VanderWeele and
Vansteelandt, 2009). Intuitively, by intervening on D without intervening on M , Y responds to D at D = d
and M equal to the natural level it would have taken with D = d, that is, M(d).
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D d M(d, e = 0) Y (d)

E e = 0

U

(a) Natural arm

D d M(e = 1) m Y (d,m)

E e = 1

(b) Manipulated arm

Figure 9: Single world intervention graphs for the parallel design of survey-based experiments,
in which assumptions 3.4.1 and 3.4.2 are explicit. (a) Natural arm. Here, only treatment is
manipulated; the ATE is identified. (b) Experimental arm. Both D and M are randomized,
and therefore we observe Y in levels of D and M . Here, the CDE is identified. Owing to
the randomization of E, information from both arms is pooled to compute (bounds on) the
mediated effects under the DGP in (a), where the mediator takes on its natural value in
response to treatment.

and Robins, 2013a; Sarvet et al., 2020).26

This design involves two assumptions, which we examine in turn below. At a high level,

these are assumptions that follow from a careful implementation of the design.

Assumption 3.4.1 (Manipulation exclusion). Y (d,m, e = 1) = Y (d,M(d), e = 0) whenever

M(d) = m for any d ∈ S(D) and m ∈ S(M).

In essence, we assume that participants are unaware of their manipulation. More pre-

cisely, the assumption states that if an individual’s mediator organically takes on the value

m in response to treatment d in the natural arm—meaning that M(d, e = 0) = m—then

forcibly setting the mediator to the same m in the manipulated arm would not have any

26SWIGs generalize DAGs to include counterfactual variables via the ‘node-splitting’ operation which il-
lustrates how factual variables transform under an intervention, but are otherwise functionally very similar.
SWIGs have proven especially effective at visually representing the conditional independencies in causal mod-
els, in particular by capturing how these relationships change under different interventions (Sarvet et al.,
2020), an important consideration here. For more details, consult Richardson and Robins (2013b).
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downstream consequences. In other words, if the individual’s response in the natural arm

would be Y (d,M(d, e = 0) = m, e = 0) = y in the natural arm, then their response in the

manipulated arm would also be Y (d,m, e = 1) = y. This assumption is encoded in the causal

graphs of Figure 9, because the experimental arm assignment E does not impact the outcome

Y . If this assumption is violated, then observed differences across experimental arms could

be an artifact of the experimental assignment, meaning that an analyst would not be able to

convincingly learn about mediated effects. See Appendix E.4.2 for further discussion of this

assumption.

Assumption 3.4.2 (Randomization). (a) The experimental arm is ignorable, {Y (d,m),M(d′), D} ⊥

⊥ E; (b) treatment assignment is ignorable in the natural arm, {Y (d,m),M(d′)} ⊥⊥ D |

E = 0; and (c) treatment and mediator assignments are ignorable in the manipulated arm

Y (d,m) ⊥⊥ {D,M} | E = 1 for any d, d′ ∈ S(D),m ∈ S(M).

This multi-part assumption provides a basis for comparisons within and across arms. First,

it states that the experimental arm is as good as randomly assigned. It further states that the

treatment is as good as randomly assigned in both the natural and manipulated arms, and

moreover, the mediator is also as good as randomly assigned in the manipulated arm. Acharya

et al. (2018) argues that in survey experiments, information-based mediators can be effectively

randomized: when M represents a piece of information that is not provided in the natural

arm, so that respondents must indirectly infer from treatment, then researchers can intervene

upon M by explicitly providing this information in the manipulated arm. This contrasts with

scenarios whereM represents ephemeral objects such as emotions or beliefs, which can only be

primed and which must also be measured post-treatment—in these cases, treatment-induced

confounding represents a major threat to validity in a mediation analysis (VanderWeele and

Vansteelandt, 2009; Imai et al., 2010, for more discussion, see Appendix E.4.1).

We now discuss matters of identification. In a mediation analysis, the goal is to commonly

to decompose the ATE into components that do and do not flow through the mediator.
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The first component is typically represented in terms of the natural indirect effect (NIE).

Conceptually, the NIE represents the average change in potential outcomes that would occur

if the treatment were held fixed, but the mediator varied (i.e. took whatever value it would

“naturally” take given treatment status for each unit), all else equal. In other words, it is

one way to describe the share of total effect of the treatment on the outcome that can be

attributed to the mediator.

The second component, representing the part of the ATE that does not flow through the

mediator, is most commonly described in terms of the natural direct effect (NDE); however,

some work has also focused on a related quantity, the controlled direct effect (CDE). The

NDE characterizes the portion of the total effect that does not involve the mediator, again

while allowing the mediator to take its “natural value” given treatment status. In contrast,

the CDE is the direct effect of the treatment on the outcome holding the mediator at a specific

value (regardless of whether the mediator would ever “naturally” take that value for a given

unit). In other words, it is another conception of the portion of the total effect that does

not involve the mediator. (See Appendix E.4.1 for formal definitions of these estimands.)

Assumptions 3.4.1 and 3.4.2 identify the ATE and the CDE, but the NIE and NDE—which

are more commonly of interest in mediation settings—remain unidentified.

While this may seem to be an important limitation of the parallel design, Acharya et al.

(2018) seek to circumvent the issue by arguing that the difference between the ATE and CDE,

which they call the eliminated effect (EE), is itself a meaningful quantity of interest for ex-

plaining causal mechanisms. As noted above, the approach in Acharya et al. (2018) does not

allow for the calculation of the NIE or NDE.27 Rather, the EE is a difficult-to-interpret combi-

nation of an indirect effect (which is of central importance in mediation analyses) and a causal

interaction (which is typically of lesser interest). In this section, we show how autobounds can

27To see this, Acharya et al. (2018) show the following decomposition of the eliminated effect at level m
into the natural indirect effect and the reference interaction (RI), EE(m) := NIE + RI(m), where the RI is
defined to be RI(m) := NDE − CDE(m). This quantity provides a combined measure of direct mediation,
NIE, and the impact of the interaction between the treatment and mediator on the direct effect (VanderWeele
and Knol, 2014; VanderWeele, 2015). For a fuller discussion of this estimand, see the appendix E.4.3.
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make the parallel design more informative. Rather than giving up on the standard quantity

of interest in mediation analysis—the NIE—simply because it cannot be point identified, we

instead use partial identification under weak assumptions to obtain informative bounds on it.

3.4.1 Replication and Extension of Acharya et al. (2018)

Here, we replicate and extend Study 2 in Acharya et al. (2018) which features an experiment

from Tomz and Weeks (2013). The study investigates how Democratic Peace theory struc-

tures public opinion, and investigates whether support for a preemptive strike, Y , against a

democratic nation (D = 1) as opposed to an autocratic nation (D = 0) is mediated by the

belief that said nation is perceived to be a threat, M . We use autobounds to bound the

NDE and NIE (for sample code, see Figure 19 in the appendix), which was not possible in

the original analysis.
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We do so by placing an additional assumption, grounded in the literature on public support

for war, on the way that regime type interacts with the perception of threat to national

security. At a high level, this assumption states that national security threats will diminish

the role of other factors—in other words, democratic norms may matter, but they will matter

less when national security is on the line.

Assumption 3.4.3 (Threat Dominates Regime Type for Most Respondents).

Pr

 Yi(d = 0,m = 0)− Yi(d = 1,m = 0)

> Yi(d = 0,m = 1)− Yi(d = 1,m = 1)

 ≥ 1− γ

allowing some fraction of respondents γ ∈ [0, 1] to behave contrary to the theorized patterns.

The upper term in the probability, Yi(d = 0,m = 0) − Yi(d = 1,m = 0), represents the

difference in respondent i’s support for a preemptive strike against a nonthreatening autocracy,

compared to a similarly nonthreatening democracy. When this term is positive, unit i is more

supportive of unprovoked attacks on autocracies and less supportive of unprovoked attacks

on nations that share democratic , when both nations pose no threat. The lower term,

Yi(d = 0,m = 1)− Yi(d = 1,m = 1), represents the difference in i’s support for an attack on

a threatening autocracy (compared to a similarly threatening democracy). The assumption

states that for most people, the latter difference is diminished: when the nation in question

poses a threat, the autocracy-democracy difference will shrink. This would be consistent with

a model in which national-security threats loom largest and respondents have limits on their

cognitive capacity or attention span for considering other criteria. The assumption does not

require that this hold for every respondent; rather, it states that when drawing respondents

from the population, most individuals (a fraction of 1 − γ) will think this way, while the

remaining γ fraction may respond differently.

Armed with this assumption, we can parcel out the component mediation effect and in-

teraction effect which comprise the eliminated effect. In particular, Figure 10 displays our
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Figure 10: The effect of democracy on supporting a preemptive strike. (Black) Point esti-
mates and 95% confidence intervals from Acharya et al. (2018). (Blue) Point estimates and
95% confidence bands of the bounds on the NIE, RI and NDE calculated using autobounds

under assumption 3.4.3.

partial identification analysis of the NIE and NDE and RI (the latter two fix the mediator

at the level corresponding to “threat”) for γ = 0 and Figure 11 shows the NIE and NDE

as γ varies within [0, 0.5]. (The sensitivity curve for the RI is not shown, as its sign is only

identified at γ = 0.) Notably, the point estimates are informative in that we can sign the NIE

for γ ∈ [0, 0.05). For γ = 0 the RI is estimated to be negative, the NIE is positive and the

NDE is strongly negative. The latter result is very intuitive: fixing perception of threat, the

results suggest that Americans will be much less likely to support an attack on a democracy

than an autocracy. The dashed lines of Figure 11 show 95% confidence bands around the

bounds which reflect sampling uncertainty. Accounting for uncertainty, the region of sign

identification is smaller for the NDE and vanishes for the NIE and RI, so we cannot draw

strong inferences about these quantities.28

28We believe that for this study, the width of the bounds and confidence intervals are in part due to
insufficiently varied data to optimally constrain the strata frequencies without further assumptions; see ap-
pendix E.4.5 for more discussion.
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Figure 11: Mediation and interaction effects on support for democratic peace. Bounds on
the NDE and NIE under assumption 3.4.3 in the replication of Acharya et al. (2018). The
red vertical line indicates the point at which we lose sign identification at the 95% confidence
level.

4 Discussion and Conclusion

Recent decades have seen the development of a raft of research designs for applied causal

inference. These strategies have revolutionized social science by making explicit and precise

the estimands and identifying assumptions under which causal relationships can be inferred

from data in a variety of scenarios. But as any applied researcher knows, these assumptions

rarely hold perfectly in practice.

In this paper, we demonstrate how recent advances in automated partial identification can

allow researchers to easily adapt several common causal designs to accommodate potential

violations of assumptions while still extracting as much information from data as possible.
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As our applications show, this approach affords numerous benefits, and addresses several ob-

stacles that have prevented the widespread use of partial identification strategies in the past.

First and foremost, this method is automated, and does not require the tedious and complex

mathematical derivations that are currently necessary for bounding solutions in idiosyncratic

settings. Second, the approach is fully flexible, allowing researchers not only to drop, but to

partially relax, any assumption about the data generating process while easily recomputing

sharp bounds on the solution. This approach also addresses a frequent complaint of mod-

ern causal inference strategies—that they prompt a focus on narrow questions in order to

satisfy the strictures of established research designs. With automated partial identification,

researchers can hold their questions fixed even when assumptions fail and point identification

is not possible, and still sharply bound the answer to the question that motivated their work

to begin with. In extreme cases, this approach can also alert the researcher to inconsistencies

between theory and data.

Further, we regard this approach as a boon for open science (Christensen et al., 2020).

While the open science movement has traditionally emphasized making data and estimation

transparent, our work focuses on a different aspect of the scientific workflow. Many com-

ponents of causal research—namely, estimands and identifying assumptions—are crucial to

replicating and extending prior work, but these key factors are often left vague or implicit in

applied work. To use our approach, all of these elements must be made explicit with precise

definitions. Only when the target quantity and assumptions are transparently communicated

can scientific debates yield meaningful progress.

Once applied, this technique can also reveal the most fruitful paths forward in a line of

inquiry. Because our method precisely estimates the empirical implications of violations of

assumptions, it can reveal which assumptions are most consequential. In some cases, an

apparently major violation may not alter a core conclusion. In others, even a small deviation

from ideal conditions can overturn an inference. With this knowledge, researchers can better
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target their efforts, designing projects which interrogate the validity of more consequential

assumptions, or seeking out data and scenarios that may obviate them.

While our proposed framework is broadly useful, several areas remain open for improve-

ment. Although the identification problem is addressed, statistical inference for the resulting

bounds is still an active and fertile area of research. For instance, while we provide a method

that includes covariates, incorporating more complex data structures—such as clustered stan-

dard errors—into the modeling remains an open challenge. Because partial identification prob-

lems are often NP-hard, there are cases in which the computation may become intractable,

even though this is not typically an issue in applied settings. One direction for improving

tractability is to automate the derivation of symbolic solutions. This, too, remains an open

research question.

We caution that our approach is not a panacea, and does not obviate the need for careful

research design. Without sound theory and identification strategies that make assumptions

plausible, the results produced by autobunds are unlikely to be informative. When used

in conjunction with high-quality research designs, however, automated partial identification

offers a powerful approach to learning from data under imperfect conditions.
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A Detailed Example with autobounds

Consider a binary treatment, D, thought to cause a binary outcome, Y , where it is known

that they share a set of unmeasured common causes, U . The analyst wishes to estimate the

ATE, Pr(Y (1) = 1)− Pr(Y (0) = 1). For instance, many studies have sought to estimate the

causal effect of college education on voter turnout (e.g. Burden, 2009; Sondheimer and Green,

2010; Ahearn et al., 2023). Indeed, U may contain factors such as income, home residence,

age, parent education, some or all of which may be difficult or impossible to measure. Due to

the presence of unobserved confounding, it is well known that this estimand is not identified

and common means of estimating it, e.g. a difference in means, are biased. However, the

ATE can be partially identified. That is, we can constrain its possible values. In the ensuing

exposition, we will use the problem of estimating the effect of college education on turnout to

illustrate how autobounds derives the bounds for the ATE.

The data generating process for this example is shown in Figure 12. The DAG in this

diagram is merely a graphical representation of the following structural causal model (Pearl,

2009)

D = fD(U)

Y = fY (d, U),

(3)

where fD and fY are unspecified but deterministic functions of their (random) arguments. In

words, we claim that obtaining an undergraduate degree is solely generated by unobserved

factors U , e.g. income and geography, while voting is generated by both level of education and

these unobserved factors for every subject under study.

Since all variables in the model are discrete, it is possible to enumerate all the possible

ways in which D and Y are generated. To see this, note that since D is binary, no matter what

value U takes, fD can only output the numbers 0 or 1. Therefore, for each u ∈ S(U)—for

D

U

Y

Figure 12: The data generating process of a simple case of unobserved confounding.
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example, a resident’s age, income and home town—we can think of a function which labels

whether or not that person would obtain an undergraduate degree

f
(U=u)
D : ∅→ {0, 1}, (4)

a mapping we call the response function. The domain of this function is empty because D is

assumed to have no other causal parents than U . In other words, for each individual, once

U is fixed, D will be determined. It follows then that this allows us to define two disjoint

types of voter according to U : those who have an undergraduate degree and those who do not.

Mathematically, this is equivalent to identifying which u ∈ S(U) activate treatment. That is

we can define the random variable

D-trt = 1
{
fUD (∅) = 1

}
=


1, for allu ∈ S(U) s.t. fUD (∅) = 1,

0, otherwise

which assigns treatment for any individual with characteristics u that would determine their

obtaining a college education. We can similarly define the control group as those with char-

acteristics that lead them to avoid a college degree D-ctl = 1
{
fUD (∅) = 0

}
. Figure 13(a)

illustrates these functions pictorially. We remark that these functions are random in U : only

when U is realized is your individual type determined; further, these groups are disjoint: a

unit either has a bachelor’s degree or they do not.

We can define a similar function for Y : upon fixing a voter’s unobserved characteristics

u ∈ S(U), only whether or not they obtain an undergraduate degree will determine if they

vote, that is, the response function for Y looks like

f
(U=u)
Y : {0, 1} → {0, 1}, (5)

which is a function of D only (for each u). Now, since the input and output of f
(U=u)
Y is

binary, there are only four possible relationships the mapping in (5) could describe for any

given u. These are f
(U=u)
Y (d) = 1, f

(U=u)
Y (d) = 0, f

(U=u)
Y (d) = d, f

(U=u)
Y (d) = 1 − d for any
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d ∈ {0, 1}.We call these functions response types and display them pictorially in Figure 13(b).

In more familiar terms, the first two response types are the units whose voting preferences are

unaffected by their education: the “always voters,” Y -av, who would vote regardless of their

education and the “never voters,” Y -nv, who would never vote, regardless of their education.

The third type are the “helped,” Y -he, individuals who would vote positively if they obtained

a college degree, but would vote negatively without one. The fourth type are the “hurt,”

Y -hu, who show the converse behavior to the helped. Any unit in the population many be

described by one of these types, depending on their value of U , which is random. For example

Y -he =1
{
fUY (d = 0) = 0, fUY (d = 1) = 1

}
: S(U)→ {0, 1}

which is a random function in U . The individual types with the indicators D-type and Y -type′

identify are called principal strata in the literature (Frangakis and Rubin, 2002; Duarte et al.,

2023).

At this juncture, it may seem that the exact nature of the support and even distribution

of U is important for describing probability distributions over the principal strata. However,

the above exposition implies that this is not in fact the case. Intuitively, since U is a common

cause of a resident’s education level and their decision to vote, the strata over Y are not

independent of those over D. These strata materialize jointly in the observed data. How

many joint response types are there? For each two education types, there are four voting

behaviors. Therefore, there are eight possible joint response types which describe all units

in the population defined by the DGP in Figure 1. Informally, since U dictates how D and

Y are generated, it follows that by defining U categorical with eight levels there is no loss

of generality in the law governing the data generating process. Note that this conclusion is

ignorant to the structure of U—it may be continuous, discrete, both or neither. Figure 13(c)

represents this conclusion; for example, the region containing D-trt, Y -nv may be interpreted

as the statement: there exists an A ⊆ S(U) such that Pr(D-trt, Y -nv) = Pr(U ∈ A)29. There
29For notational conciseness, we write Pr(V -type) as shorthand for Pr(V -type = 1) throughout for any

53



are eight of the regions A, called canonical partitions, which can be thought of as eight point

masses of the now discrete random variable U . For more details and examples, consult Balke

and Pearl (1997) and Duarte et al. (2023).

The previous exposition implies that we can represent any factual or counterfactual query

in terms of the principal strata. In fact, this conclusion is exemplified in Proposition 2 of

Duarte et al. (2023), which we restate below.

Proposition 1. Suppose G is a canonical30 DAG over a discrete causal model and define

{Cl : l} a set of counterfactual statements, indexed by l, in which Cl = {Vl(al) = vl} states

that variable Vl will take on value vl under manipulation(s) al. Let U = (U1, . . . , Uk) be the

collection of all exogeneous variables in G. Further, define 1 {U =⇒ {Cl : l}} the indicator

function which takes on the value one if and only if the exogeneous realizations in U deter-

ministically lead to Cl being satisfied for every l. Then, under the structural equation model

for G

Pr

(⋂
l

Cl

)
=

∑
U∈S(U)

1 {U =⇒ {Cl : l}}
∏
k

Pr(Uk = uk). (6)

There are three key elements of this proposition we highlight here. Firstly, Equation 6 says

that any factual31 or counterfactual query may be equivalently expressed by first identifying

which realizations of exogeneous variables inU generate that query, and second computing the

likelihoods of hitting those realizations. Since all exogeneous variables are mutually indepen-

dent, we may simply multiply the mass functions for each disturbance separately. Secondly,

recalling that the previous exposition showed the equivalence between the exogenous distur-

bances and principal strata, we conclude that principal stratification is sufficient to describe

any quantity we wish over a discrete causal model. Finally, the primary advantage of this

result is that by connecting the disturbances to (counter)factual queries in this fashion, we

may express any causal quantity we wish as a polynomial in the strata frequencies. This

makes for ready use of modern optimization toolkits to quickly and accurately compute the

variable V .
30A DAG is canonicalized by removing superfluous networks of exogeneous variables, distilling the DAG

into its simplest form while losing no generality in the full data law. All DAGs can be canonicalized, and thus
considering only this class of DAGs is unrestrictive. See section 3.1 of Duarte et al. (2023) for an example.

31Factual queries correspond to the empty intervention, i.e. ‘do nothing’.

54



bounds numerically.

Take, for instance, the probability that one has a Bachelor’s degree but does not vote,

Pr(D = 1, Y = 0). We may directly apply Proposition 1 and write

Pr(D = 1, Y = 0) =
∑

u∈S(U)

1 {u =⇒ {D = 1, Y = 0}}Pr(U = u), (7)

=
∑

u∈S(U)

1
{
f
(U=u)
D (∅) = 1, f

(U=u)
Y (d = 1) = 0

}
Pr(U = u). (8)

From this, we can now make the connection to principal strata clear. Notice that the right-

hand side of Equation 8 contains only individuals who posses a Bachelor’s degree (D = 1),

and those who would not vote if they had one. Therefore, the voter can only have Y -type

either Y -nv or Y -hu. Mathematically, this is a simple consequence of the equivalence between

the the right-hand side of (8) and the following expression32

∑
u∈S(U)

1
{
f
(U=u)
D (∅) = 1, f

(U=u)
Y (d = 1) = 0, f

(U=u)
Y (d = 0) = 0

}
Pr(U = u)+

∑
u∈S(U)

1
{
f
(U=u)
D (∅) = 1, f

(U=u)
Y (d = 1) = 0, f

(U=u)
Y (d = 0) = 1

}
Pr(U = u).

It therefore follows that

Pr(D = 1, Y = 0) = Pr(D-trt, Y -nv) + Pr(D-trt, Y -hu). (9)

That is, this member of the electorate is the type of voter who possesses a Bachelor’s degree,

and would not vote either (i) regardless of their education, or (ii) because of it. We cannot

specify which of (i) or (ii) is true because we do not know how the subject would have voted

had they not obtained a degree, i.e. another manifestation of the fundamental problem of

causal inference (Holland, 1986).

We now return to the causal question of interest, the ATE. As we have just seen, an

advantage of principal stratification is that we can turn queries about voting behavior into

32If X and W are propositions, then 1 {X,W}+ 1 {X,W c} = 1 {X} where W c is the complement of W .
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statements about the likelihood of being a certain type of voter. Focus on the first component

of the ATE, E[Y (1)] = Pr(Y (1) = 1) (because Y is binary). Consider how an intervention on

undergraduate education changes the structural causal model. We have

D = 1

Y (1) = fY (d = 1, U)

(10)

In this world, all units possess an undergraduate degree so there is no longer any randomness

in the assignment of D. Subsequently, we generate the counterfactual Y (1), which is the

voting decision for a subject in a world where they are forced to obtain an undergraduate

degree. To express the query Pr(Y (1) = 1) in terms of strata, observe that, if they vote

in a world where a unit is forced to go to college, their Y -type can only be Y -he or Y -av.

However, this logic assumes the unit is forced to obtain a college degree, i.e. where U doesn’t

determine D; we do. The process of collecting observational data, though, does not provide

us that luxury, since U causes D but is unknown. Therefore, this unit could be any of the

four response types (D-trt, Y -he), (D-trt, Y -av), (D-ctl, Y -he), (D-ctl, Y -av), which yields

Pr(Y (1) = 1) = Pr(D-trt, Y -he) + Pr(D-trt, Y -av) + Pr(D-ctl, Y -he) + Pr(D-ctl, Y -av).

By identical reasoning, it follows that Pr(Y (0) = 1) = Pr(D-trt, Y -av) + Pr(D-trt, Y -av) +

Pr(D-ctl, Y -hu)+Pr(D-ctl, Y -hu). Using these decompositions, the ATE may be expressed as

probabilities over the principal strata as follows

E[Y (1)−Y (0)] = Pr(D-trt, Y -he)+Pr(D-ctl, Y -he)−Pr(D-ctl, Y -hu)−Pr(D-ctl, Y -hu). (11)

Even though this quantity is not point identified, it is always possible to derive bounds on its

magnitude. The widest possible bounds are [−1, 1], since Y is binary. However, observational

data may allow us to narrow these bounds significantly.

We now show how to form the polynomial program which autobounds uses to compute

these bounds. To begin, we identify the parameters over which we optimize. These are
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the strata frequencies : Pr(D-type),Pr(D-type-Y -type′) for all stratum types, which are of

course unknown. Secondly, define the objective: this is the ATE in equation (11). Finally,

identify constraints on the strata, these are: the laws of probability (strata frequencies must

be contained in [0,1] and sum to unity), which we contain in the set CP ; and, the strata must

combine to produce the observed data exactly, which we term the evidential constrains CE .

Thus, we aim to numerically solve

optimize
Pr(D-type),

Pr(D-type, Y -type′)

Pr(D-ctl, Y -he) + Pr(D-trt, Y -he)− Pr(D-ctl, Y -hu)− Pr(D-trt, Y -hu) (12a)

subject to 0 ≤ Pr(D-type) ≤ 1, 0 ≤ Pr(D-type, Y -type′) ≤ 1, ∀ type, type′ (12b)∑
type

Pr(D-type) = 1,
∑

type,type′

Pr(D-type, Y -type′) = 1 (12c)

Pr(D = 0, Y = 0) = Pr(D-ctl, Y -he) + Pr(D-ctl, Y -nv) (12d)

Pr(D = 0, Y = 1) = Pr(D-ctl, Y -hu) + Pr(D-ctl, Y -av) (12e)

Pr(D = 1, Y = 0) = Pr(D-trt, Y -nv) + Pr(D-trt, Y -hu) (12f)

Pr(D = 1, Y = 1) = Pr(D-trt, Y -he) + Pr(D-trt, Y -av) (12g)

Lines (12b)-(12c) are the constraints contained in CP while lines (12d)-(12g) are the con-

straints contained in CE . Intuitively, in problem (12), the observed data constrain the possible

compositions of voter types within the sample, from each of which we may compute an ATE.

The output of the program is the best- and worst- case values of the ATE from those con-

sistent with those compositions of voter types. The software autobounds, taking the DAG,

estimand, observational data and any additional assumptions (e.g. monotonicity) as inputs,

will build and solve this optimization program automatically. We note that because the data

used to compute the probabilities in this optimization problem contain sampling error, these

bounds are estimated with statistical uncertainty; see Appendix C for details.

In Appendix E, we will repeat the polynomialization explained in detail in this section

for each of the examples this paper discusses. For the sake of brevity, we will henceforth

not convert every disturbance polynomialization into that over strata frequencies, however, to

review examples of how to do this we recommend the reader revisit Appendices A and E.1.
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Figure 13: Schematic illustrating canonical partitions and principal stratification in the binary
case. (a) Certain characteristics u, u′ ∈ S(U) will determine if a unit obtains a bachelor’s
degree. (b) Potentially different characteristics ui, uii, uiii, uiv ∈ S(U) determine how a unit’s
voting preferences respond to their education. (c) A diagram displaying how we can conceive
S(U) as partitioned by eight non-overlapping regions corresponding to the combinations of
types in (a) and (b); in this way, we show visually that our data are sufficiently described by
these strata. For example, we can visualize P (Y (1) = 1) as the probability of belonging to
the green shaded region.
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A.1 Simulated Data for Section 2.2

First some notation. In the previous section, we wrote D-type and Y -type to denote the

principal strata for the treatment and outcome variables, as in those cases type had a simple,

intuitive meaning for each possible type. This convenience is an artifact of the low cardinality

of the problem, D had no observed parents and the only observed parent of Y was a binary

variable, D. In the example we describe in section 2.2, the addition of the (even binary)

observed parent X as a common cause of D and Y increases the cardinality of the problem

to the point that this group partisanship notational style becomes cumbersome: we would

need a name for each stratum and some manner in which to remember them. Consequently,

we adapt the notation to an algebraic style which we describe as follows: the object Vv

denotes the principal stratum of the factual variable V with index v. The index v has digits

(v0v1v2 . . . vn−1), where each vi is the value that V takes when its parents are set to the

configuration associated with position i in some fixed ordering of all possible parent value

combinations (e.g. topological ordering). This implies that the index v is a number written

in base-b, where b = |S(V )| and the number of digits in v is equal to n =
∏

W∈paV
|S(W )|,

where paV is used to denote the observed parents of V ; if paV is empty, we set n = 1. The

reason why v is represented in a base equal to the cardinality of V is because each digit in v

represents the value that V takes under a specific instantiation of its parents.33

This is best illustrated with an example. Consider the simple D-Y confounding problem

as discussed in section A. Here, D has no observed parents, therefore its strata are described

by Dd where d is a number in base-2 (b = |S(D)| = 2), of length unity (n = 1). As D

takes on values only 0 and 1, the strata for D are D0 and D1. Now, Y has one observed

parent, D, which is binary. Therefore, y is a binary number of length 2. Taking y = y0y1,

we now specify an ordering for configurations of the parents of Y . Let’s say, y0 represents

the value of Y when D = 0 and y1 represents the value of Y when D = 1. This ordering is

33For this to hold consistently we assume all variables of interest take values in {0, 1, . . . , |S(V )|}, although
this nomenclature can be generalized to variables that take on a finite number of nonconsecutive integer values.
However, when the support of each variable V is conveniently within the set {0, 1, . . . , |S(V )|} notice that the
index v, when read as a number in base-b, actually counts the number of strata which exist for variable V
alone.

59



mathematically arbitrary but we make this choice for readability. In this way, we have the

equalities Y00 = Y -never, Y01 = Y -comply, Y01 = Y -defy and Y11 = Y -always.

Now, we apply this to our introductory example in section 2.2. Here, X has no parents, so

its index x is a single binary digit. The binary treatment D has one binary parent (X) and so

d is a binary number of length 2, while the binary outcome Y has two binary parents, so its

index y is a number in base-2 of length 4. Next we impose an ordering on the indices. For X,

this is trivial. Letting d = d0d1, take di the value of D when X = i. Writing y = y00y01y10y11,

let yij represent the value of Y when D = i and X = j.

To simulate data for the introductory example, we assume that X ∼ Bernoulli(0.6) (so

P (Xx) = 0.6x(1− 0.6)(1−x)),

Pr(D00Y0000) = 0.074576212961429,

Pr(D01Y0001) = 0.0301702777607751,

Pr(D01Y0101) = 0.186607173274612,

Pr(D01Y1101) = 0.00798467737923486,

Pr(D10Y0010) = 0.348297597134471,

Pr(D10Y1001) = 0.134412818663854,

Pr(D10Y1010) = 0.0480346194425266,

Pr(D10Y1111) = 0.0940165222917155,

Pr(D11Y1100) = 0.0345830964246296,

Pr(D11Y1101) = 0.041317004666752,

and all other strata have probability zero.

With this setup, using ideas discussed in the previous section, we compute the true ATE

as the relevant combinations of these strata and then produce the observed law on which

we apply autobounds. We also make sure that this DGP satisfies the weak monotonicity

assumption. See a coded example simulation.py for more details.
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B Additional Sensitivity Analyses for Instrumental Vari-

ables

We can simultaneously relax monotonicity and the exclusion restriction. Since we change

several sensitivity parameters at once, we produce a surface of lower and upper bounds for

the LATE. Figure 14 displays the results. This figure reveals several interesting points. First,

remark that cross-sections of this figure along the line γDEF = 0 is Figure 3. Second, observe

that the set of simultaneous violations (γDEF, γER) ∈ [0, 0.01] × [0, 0.01] yield bounds on the

LATE which do not include zero. This set is the cross of the green regions in Figure 14

and its existence demonstrates that violations of both assumptions simultaneously may still

yield informative bounds on the LATE, however, in this study the tolerance for violations

of assumptions is minimal. Lastly, the complex shape of the surface reveals a non-trivial

interaction between the sensitivity parameters, the analysis of which is a subject of further

study.
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(a) Isometric view

(b) Plan view

Figure 14: Multivariate sensitivity bounds on the LATE. The green rectangular region
is the collection of all (γDEF, γER) where the sign of the LATE is identified.
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C Practical Considerations: Statistical Uncertainty and

Covariate Adjustment

Next, we consider two practical considerations in applied research: (1) quantification of sta-

tistical uncertainty due to sampling error, and (2) adjustment for background covariates that

are not of primary interest.

C.1 Preliminaries

Before formalizing the proposed methods, we first introduce additional notation and key

concepts. Let PV (W) represent the full data law—that is, the full joint distribution over

all possible factual and counterfactual versions of variables V in response to every possible

intervention w ∈ W—in the population of interest. This distribution is generally unknowable,

but it is a useful construct: all possible quantities, including observable factual quantities and

unobservable counterfactual quantities of interest, are determined by the full data law.34 We

will use φ(PV (W)) to represent the estimand; this function essentially takes a full data law and

reduces it down to one particular quantity of interest, such as the ATE. Where the full data

law being discussed is clear from context, we will drop the argument and write φ := φ(PV (W)).

Let PV denote the observed data law, a marginal of PV (W) containing only the factual versions

of variables in V .

Next, let Aφ and Aφ represent the deterministic autobounds functions that respectively

compute sharp lower and upper bounds on the estimand φ by solving polynomial programs

to global optimality when supplied some set of observed information. If analysts somehow

possessed perfect information on the full data law PV (W), then supplying this information to

autobounds would point identify the quantity of interest, so that Aφ(PV (W)) = Aφ(PV (W)) =

φ(PV (W)). If analysts possessed factual data on all units in the population, so that the observed

law PV is perfectly observed, then applying autobounds to this information would yield the

34autobounds works by reasoning about possible full data laws that are consistent with available information.
Specifically, it does so by reasoning about possible joint distributions of principal strata, which is one way to
represent the full data law.
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population bounds [Aφ(PV ),Aφ(PV )]. In the more common case where analysts possess only a

sample of units and must estimate the observed law, P̂V , then applying autobounds to these

inputs will yield the estimated bounds [Aφ(P̂V ),Aφ(P̂V )] instead.

A Running Example. Consider a simple confounding scenario in which a binary treatment

D causes a binary outcome Y , with D and Y confounded by an unobserved U . The main

variables are V = [D, Y ]⊤; the full data law PV (W) is the distribution over D, Y (d = 0), and

Y (d = 1); a common estimand is the ATE, φ(PV (W)) = PV (W)(Y (d = 1) = 1)−PV (W)(Y (d =

0) = 1); and the observed data law PV is the distribution over D and Y only. Given a

sample of factual variables on N units, the empirical analog of the observed data law is

P̂V (d, y) :=
1
N

∑N
i=1 1(Di = d, Yi = y).

C.2 Statistical Uncertainty

If data is available on the entire population of interest, autobounds derives sharp population

bounds. These are ranges of possible answers that account for fundamental uncertainty, rather

than statistical uncertainty: if key variables are confounded, even with an infinite number of

observations, researchers may still only be able to recover a range of possible answers rather

than uniquely identifying a single one. These population bounds can be calculated by sup-

plying autobounds with perfectly measured information on the population distribution of

the observed variables. When this distribution is measured with sampling error, computing

bounds that ignore this error—i.e., treating the empirical distribution as if it were the popula-

tion distribution, via the plug-in principle—autobounds produces estimated bounds. Finally,

when directed to account for this sampling error in the observed quantities, autobounds will

widen the estimated bounds to obtain confidence bounds.

Here, we develop a quasi-Bayesian technique for computing these confidence bounds that

possesses asymptotic frequentist properties. Specifically, we utilize the transparent reparame-

terization proposed by Richardson et al. (2011); see also Knox et al. (2019). A model follow-

ing this reparameterization distinguishes between causal parameters that are identified and

unidentified, and it places priors only on the parameters which are identified. This approach
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has two primary advantages. First, Richardson et al. (2011) shows that this approach can

circumvent an undesirable property of standard Bayesian approaches: the fact that priors on

unidentified parameters can induce strong posterior sensitivity to the specific prior chosen,

because data are fundamentally unable to contradict these priors. Second, by utilizing the

transparent parameterization, analysts can ensure that posterior inferences will respect the

restrictions imposed by the assumed causal model. Even when off-the-shelf priors on the ob-

served data law are used—i.e., priors that do not necessarily respect the restrictions implied

by the causal assumptions—the procedure we propose can detect and reject posterior samples

that are inconsistent with these assumptions. In general, implied constraints are not easy to

obtain; the instrumental inequalities given in (2) are one of the few known examples. How-

ever, the autobounds paradigm ensures that they are accounted for because of the way that

falsification testing is automatically handled (see Appendix A for details).

C.2.1 Uncertainty Quantification without Covariates

We now explain our quasi-Bayesian approach to uncertainty quantification in detail. Suppose

the discrete variables in V can take on K possible combinations; in this case, PV can be

thought of as a K-valued categorical distribution. We will collect the parameters of PV in

the vector θV , where the k-th element θvk
represents the probability of the k-th combination,

PV (V = vk). For instance, in the simple confounding example, there are K = 4 observable

combinations of main variables: one parameter represents the probability PV (D = 0, Y = 0),

while another represents PV (D = 1, Y = 1). Going forward, in a slight abuse of notation, we

will write Aφ(PV ) and Aφ(θV ) interchangeably, and similarly for the upper bound Aφ, as the

observed data distributions PV are in one-to-one correspondence with their parameter vectors

θV .

For the θV parameters of the observed data law PV , we impose an uninformative uniform

prior, Dirichlet(1K)—in other words, every possible combination of observed data values is

given equal prior mass.35 It can be seen that the exact prior is unimportant, as the posterior

will be dominated by the likelihood as the number of samples grows large. Crucially, in

351K is the K-dimensional vector of all ones.
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the transparent parameterization paradigm, we do not place priors on purely counterfactual

quantities, which only appear in the full data law PV (W) and not in the observed data law

PV . In the confounding example, for instance, we do not place priors on the proportion

of “never takers,” PV (W)(Y (d = 0) = 0, Y (d = 1) = 0), because the observed data could

never contradict this prior due to the fundamental problem of causal inference. For the same

reason, we do not conduct standard Bayesian inference with respect to these fundamentally

unidentified parameters—e.g., by sampling or integrating over possible values for them—

because their “posteriors” would merely be driven by the priors chosen. Rather, our approach

is “quasi-Bayesian” in the sense that it conducts best- and worst-case reasoning over these

unidentified parameters and is only truly Bayesian with respect to the identified parameters

of the observed data law.

The dataset to be analyzed is a collection of samples V = {Vi}Ni=1; this can be thought of

as a matrix in which each row i contains Vi, the vector of observed values for unit i, which is

an i.i.d. draw from the true observed data law PV . As before, the categorical proportions in

PV are collected in the parameter vector θV , on which we will conduct inference. By stan-

dard Bayesian Dirichlet-multinomial conjugacy results, a uniform prior θV ∼ Dirichlet(1K)

yields a posterior shaped by the prevalence of unique rows in the observed dataset, (θV |

V) ∼ Dirichlet
([

1 +
∑N

i=1 1{Vi = vk}
])

. For example, consider the all-binary confounding

example where V = [D, Y ]⊤ and we wish to bound the ATE, φ = E[Y (d = 1) − Y (d = 0)].

We possess a dataset V = {[Di, Yi]
⊤}Ni=1 containing N = n00 + n01 + n10 + n11 samples (rows)

from PDY , where ndy is the number of times the row containing [d, y] ∈ {0, 1}2 appears in the

dataset V. We impose a uniform prior θDY ∼ Dirichlet([1, 1, 1, 1]⊤) which yields the posterior

(θDY | V) ∼ Dirichlet([n00 + 1, n01 + 1, n10 + 1, n11 + 1]⊤).

For the quantity of interest φ, our goal is to sample from the posterior for its lower and

upper bounds, respectively denoted φ and φ. To preview the proposed method, each sample

of the bounds will be constructed as follows: we will sample one possible observed data law

that is consistent with the available data, (θ∗
V | V) ∼ Dirichlet

([
1 +

∑N
i=1 1{Vi = vk}

])
,

then transform it into one sample of the bounds under this sampled observed data law, the

interval
[
φ∗, φ∗] = [Aφ(θ∗

V ),Aφ(θ
∗
V )
]
, using autobounds.
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This sampling procedure is justified because the posterior distribution over the bounds,

conditional on the data, is given by

p
(
φ, φ | V

)
=

∫
p
(
φ, φ | θV ,V

)
p(θV | V) dθV

=

∫
p
(
φ, φ | θV ) p(θV | V

)
dθV

=

∫
δ
(
Aφ(θV )− φ

)
δ
(
Aφ(θV )− φ

)
p(θV | V) dθV . (13)

Here, δ(x) is a Dirac delta distribution that places a unit point mass at x = 0. The first

line follows from the law of total probability, marginalizing over uncertainty in the observed

data law θV . The second line utilizes the sufficiency of the category proportions θV , a set of

summary statistics that fully capture all information in the raw data V. The third line then

uses the fact that autobounds is a deterministic procedure: for any given θV , the bounds

(φ, φ) are fully determined via the functions Aφ and Aφ. Consequently, the integral in (13) is

simply the pushforward measure of the posterior p(θV | V) under the map

θV 7→
[
Aφ(θV ), Aφ(θV )

]
.

This structure enables straightforward Monte Carlo approximation of the integral in (13): for

each posterior sample s ∈ {1, . . . , S} we draw θ
(s)
V ∼ p(θV | V), and for each sample compute

the bounds

φ(s) = Aφ(θ
(s)
V ) and φ(s) = Aφ(θ

(s)
V ).

By the law of large numbers, the empirical distribution of these samples approximates the pos-

terior over the bounds. In particular, the α
2
- and (1− α

2
)-quantiles of the sampled {φ(s)}Ss=1 and

{φ(s)}Ss=1, respectively, yield credible intervals that possess asymptotic frequentist guarantees

on, e.g., coverage rates for the population interval.
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C.2.2 Alternative Approaches to Uncertainty Quantification

As the sharp-bounding functions Aφ(PV ) and Aφ(PV ) are generally non-smooth functions of

the observed data law, performing inference on estimators of these quantities by standard

methods, e.g. delta method or bootstrap, is often intractable. Some prior work has sought to

impose a “margin condition” that assumes the full data law being studied does not happen to

lie near the points where the bounds are non-differentiable (Levis et al., 2023). This assump-

tion is essentially one of convenience; it is difficult to empirically verify or justify from first

principles. When it does not hold, previous analyses have shown that the estimated bounds

Aφ(P̂V ) and Aφ(P̂V ) can underestimate (overestimate) the true bounds in finite samples of

arbitrary size (Manski and Pepper, 2000, 2009). Finally, while resampling techniques could

be used to approximate the bounds’ joint asymptotic distribution, the aforementioned lack

of regularity complicates standard methods to compute this approximation and precludes the

direct use of methods like the nonparametric bootstrap (Shao, 1994; Andrews, 1999; Andrews

and Han, 2009; Bugni, 2010; Canay, 2010). It is worth noting that there are several frequentist

alternatives to performing inference over bounds (Chernozhukov et al., 2013; Kennedy et al.,

2019; Ji et al., 2023).

C.3 Covariate Adjustment

Next, we turn to the scenario in which analysts possess some background covariates that are

not of primary interest, for which they would like to adjust. When these background covariates

are continuous, the theory developed in Duarte et al. (2023)—which is developed for fully dis-

crete settings—requires some extension before it can be used. Here, we develop a model-based

technique, utilizing a generalized linear model, for conducting this covariate adjustment. We

also extend our quasi-Bayesian approach to this setting as well. Because this approach relies

on modeling assumptions that are unlikely to hold exactly, we recommend that the results

be regarded as an approximate bias correction step, much like augmentation of potentially

misspecified inverse propensity weighted estimators (Robins et al., 1994; Scharfstein et al.,

1999; Glynn and Quinn, 2010) or linear corrections with inexact matching estimators (Abadie
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and Imbens, 2011).

We now extend this quasi-Bayesian approach to uncertainty quantification to the common

scenario where researchers wish to adjust for covariates to eliminate potential sources of con-

founding. We will suppose that these covariates are nuisances, in the sense that researchers

would like to estimate aggregate quantities that average over all covariate values, such as the

ATE, rather than comparing conditional effects at different covariate values. We also develop

an algorithm to perform statistical inference over these covariate-averaged bounds.

To fix the setting, suppose that as before, we possess dataset [V,X] = {[Vi,Xi]}Ni=1 where

each row i is a sample from a now-expanded observed data law, PV X . Beyond the original

V , the discrete main variables previously discussed, we now allow for additional background

covariate(s) X, which are allowed to be continuous. We will suppose that within each value

of x there exists a conditional estimand φx, such as the conditional ATEx = E[Y (d = 1) −

Y (d = 0)|x]. Our overall quantity of interest is φ = EX [φX ], such as the unconditional

ATE = E[Y (d = 1)− Y (d = 0)] = EX [E[Y (d = 1)− Y (d = 0)|X]].

We will conduct inference by reasoning about the covariate-conditional distributions over

the main variables, or equivalently, the parameters of these conditional distributions θV |x.

Here, each θV |x is a parameter vector representing the categorical proportions of V conditional

on the covariates taking on values x. At a high level, the proposed method proceeds as follows.

At each distinct value of x observed in the data, we will construct a posterior over the

conditional category proportions, θV |x. We then follow the general quasi-Bayesian approach

described in Appendix C.2.1 by repeating it within x values, yielding conditional bounds on

the local quantities φx. Finally, the overall posterior for bounds on the aggregate quantity of

interest φ will be obtained by reaggregating the posteriors for these conditional bounds.

When the number of unique x values is small, the method of Appendix C.2.1 can be applied

without modification within each level of the covariates. In this case, covariate adjustment

can be handled nonparametrically. To accommodate scenarios where X is continuous or

high-dimensional, however, we develop a model-based extension that allows researchers to

approximately adjust for covariates by estimating the θV |x through multinomial logistic re-

gression. This places the following parametric structure on the main-variable proportions:
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θvk|x = PV X(V = vk|X = x) =
exp(β⊤

k ϕ(x))∑K
k′=1 exp(β

⊤
k′ ϕ(x))

= softmax(β⊤ϕ(x))k (14)

where vk is one possible combination of observed main-variable values, such as D = 0 and Y =

0 in the confounding example, and ϕ(x) is a basis expansion function that maps the covariates

x to a set of features that may include indicator variables, nonlinear transformations, and

interactions. Here, βk is a vector of regression parameters indicating how the covariates x

(and their expanded basis functions) translate into greater or lesser probabilities of observing

a specific combination of main variables vk, and the summation in the denominator ensures

that the x-conditional category proportions sum to unity. We will use β := [β1, . . . ,βK ] to

denote the joined vectors of regression coefficients. There are a number of techniques for

sampling from the posterior of these parameters, p(β | V,X), which has no closed form; for

simplicity, our implementation is based on the widely used Laplace approximation, though the

proposed method easily accommodates other approaches such as Markov chain Monte Carlo

sampling from the multinomial logistic regression posterior.

Recall that our target of inference is bounds on the marginal estimand φ = EX [φX ]. We

now illustrate how the previous construction yields a simple four-stage sampling algorithm

from the posterior p(φ, φ | V,X). Each sample s ∈ {1, . . . , S} from the marginal bounds

posterior, is constructed by first taking a sample β(s) from the multinomial logistic regression

posterior; second, applying the deterministic transformation in (14) to obtain θ
(s)
V |x; third,

conducting the deterministic autobounds calculation yielding φ(s)
x

= Aφ(θ
(s)
V |x) and φ

(s)
x =

Aφ(θ
(s)
V |x); and finally, averaging these bounds across the empirical distribution of X, giving

φ(s) =
∑N

i=1 φ
(s)
xi

and φ(s) =
∑N

i=1 φ
(s)
xi . This last step follows because φ is the expectation of

φX . This four-step procedure is justified because the posterior distribution over the marginal
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bounds is

p
(
φ, φ | V,X

)
=

∫
p
(
φ, φ | β,V,X

)
p(β | V,X) dβ

=

∫
δ

(
φ−

∫
Aφ(θV |x)p(x) dx

)
δ

(
φ−

∫
Aφ(θV |x)p(x) dx

)
p(β | V,X) dβ

where θV |x = softmax(β⊤ϕ(x)). The first equality follows by law of total probability, and

the second follows from the fact that φ, φ is a composition of deterministic functions of β, as

described above. We encapsulate this procedure in Algorithm 1.

Algorithm 1 Quasi-Bayesian Covariate Adjustment via Laplace Approximation

Input: Estimand φ, Data {Vxi
}Ni=1, Resample count M , Confidence level α

Output: Partial identification interval [φ, φ] with (1− α)× 100% coverage

Estimate posterior mode and covariance, β̂ and Σ̂, via Laplace’s approximation of p(β | V,X)
for s = 1 to S do

Sample β(s) ∼ N (β̂, Σ̂)
for i = 1 to N do

Compute θ
(s)
V |xi
← softmax(β(s)⊤ϕ(xi))

Assign φ(s)
xi
← Aφ(θ

(s)
V |xi

), φ
(s)
xi ← Aφ(θ

(s)
V |xi

)

end

φ(s) ← 1
N

∑N
i=1 φ

(s)
xi
, φ(s) ← 1

N

∑N
i=1 φ

(s)
xi

end

φ← quantileα/2({φ(s)}Ss=1) and φ← quantile1−α/2({φ(s)}Ss=1)

First, approximate the posterior over the multinomial logistic regression parameters β

using a standard Laplace approximation. Second, to account for uncertainty, draw S sam-

ples β(s) ∼ N (β̂, Σ̂) from this approximate posterior. For each sample and each observed

covariate value xi, compute the conditional category probabilities θ
(s)
V |xi

using the softmax

transformation. Then, apply the autobounds procedure to these conditional distributions to

obtain lower and upper bounds on the local estimand φxi
. Aggregate these bounds across

covariates by averaging over the observed values xi, i.e., using the empirical distribution of

X. Finally, return a (1− α)% credible interval for the covariate-averaged partially identified

estimand φ by computing the empirical α/2 and 1−α/2 quantiles of the simulated lower and

upper bounds across all posterior samples. .
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We offer two remarks on this procedure. First, in practice, we recommend using at least

S = 1000 samples to ensure stable estimates of the bound distributions. Second, results are

determined by the specific causal assumptions supplied to autobounds paradigm (see Section

2.2), and thus results are only guaranteed to be valid to the extent that those assumptions

hold.

This combined approach provides several advantages over standard methods. The quasi-

Bayesian procedure propagates estimation uncertainty in a principled manner, while the

autobounds application ensures valid coverage even in partially identified settings. The final

aggregated bounds appropriately account for observed heterogeneity and remain valid for the

aggregate quantity of interest.

C.3.1 Validity of Covariate-averaged Bounds.

We now provide formal reasoning for the validity of the averaging of the bounds presented

in the previous section. We will first demonstrate the validity and sharpness of the local

bounds, i.e. at each covariate level x. We then present a proof of validity for the bounds upon

averaging.

To begin, we introduce some new notation. Let G be a directed acyclic graph over the

variables W = V ∪X∪U where V are observed discrete variables, U are unobserved, and X

are measured covariates which may be discrete or continuous. Let PW be a distribution over

W compatible36 with G, and define any distribution PS, S ⊂W , as a margin of this PW , that

is, PS =
∫
PW dPW \S. Also, write PS|v to be the analogous conditional margin of PW |v, where

PW |v is the conditional distribution of W \ {V } on the event V = v. We remark that PV (W)

as defined earlier is equal to PW under the NPSEM (Pearl, 2009) we assume here. We have

chosen to adjust notation slightly for the ensuing exposition as emphasis on the unobserved

variables U will become important.

Next we describe the kinds of questions a user of autobounds might ask. We begin at the

most granular level, with a causal query.

36Compatibility means that PW obeys the Markov factorization over W implied by G.

72



Definition 1 (Causal Query). A causal query is a functional ψt(PW ) such that

ψt(PW ) := PW

(
L⋂
i=1

Ei(ti)

)

where Ei(ti) is a counterfactual statement over variables in V ∪X, under a series of fixed

interventions T = {t1, . . . , tL} on elements of V .

Revisiting the running example, where V = [D, Y ], ψt(PW) = PW(Y (d = 1) = 1) has

t1 = (1) with E1(t1) = {Y (d = 1) = 1}.

Definition 2 (Causal Estimand). A causal estimand is a functional

φt,t′(PW ) = g(ψt(PW ), ψt′(PW ))

where g is a measureable function.

In the simple counfounding case the ATE

PW (Y (d = 1) = 1)− PW (Y (d = 0) = 1) (15)

is a causal estimand with g(a, b) = a− b and the specifications of ψt, ψt′ are readily apparent.

The following definition characterises all estimands for which our sharpness result will

hold.

Definition 3 (Causal Collapsibility; (Huitfeldt et al., 2019)). We say that φ is causally

collapsible with respect to PX if

EPX
[φt,t′(PW |X)] = φt,t′(PW ).

In words, Definition 3 calls any causal estimand causally collapsible with respect to PX if

we can recover the marginal estimand by averaging the conditional estimand quantity over the

covariate distribution. With respect to this definition, examples of causal estimands which

are collapsible with respect to PX include the ATE and the CDE; a non-example is the ATT,
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since the weights needed to average the causal estimand do not in general equal PX . The

notion of collapsibility can be easily generalised to weights which differ from PX , however,

such estimands are beyond the scope of the result we present below.

We are now ready to state the two main results in this section. The first describes the

sharpness of the covariate-conditional bounds, the second will illustrate the validity of these

bounds upon averaging them. Adapting notation from previously, write Aφ, and Aφ, where for

any evidence PV , Aφ(PV ) and Aφ(PV ) are the lower bound and upper bounds on estimand φ

under the autobounds procedure; in the ensuing exposition we focus only on the lower bound

as proofs for the upper bound are analogous. Also, to complete the proof, we will rely on

the graphical theory of Single World Intervention Graphs37, or SWIGs, which combine DAGs

and potential-outcomes into a single graphical framework, please see (Richardson and Robins,

2013b) for a complete description.

We begin with the following proposition.

Proposition 2. Let G be a canonical DAG over variables W = V ∪X∪U , as in the preamble.

Suppose there exists a variable X ∈X such that

1. X has no parents except its exogeneous disturbance, UX ;

2. X is a parent of all variables V ∈ V \ {X};

3. UX has no children other than X.

Then, the quantity Aφt,t′ (PV |x) is a sharp lower bound for φt,t′(PW |x).

Proof. For any x ∈ S(X) fixed, consider the SWIT (Richardson and Robins, 2013b) G(x)

associated with G, where the fixed node x is removed.38 Now G(x) is a canonical DAG over

the variables W (x) := {V (x) : V ∈ V } ∪U ∪X. Write V (x) := {V (x) : V ∈ V }. Take any

causal estimand φ(t,x),(t′,x)(PW ) comparing queries under interventions (t, x) and (t′, x) where

37In their original paper, Richardson and Robins make a distinction between a SWIG and a SWIT, where
a SWIG is a SWI(Template) instatiated at a specific numerical intervention.

38Richardson and Robins (2013b) do not advise removing fixed nodes from a SWIT because the map from
a DAG to any of its SWITs is not injective in general. That is, a given SWIT does not imply a unique DAG
as provenance. However, all relevant Markovian and graphical properties of the SWIT remain even without
keeping the fixed nodes. As the autobounds paradigm requires the user to fix the DAG before doing any
computation, this concern is alleviated.
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t, t′ do not fix x. By Theorem 1 of Duarte et al. (2023), it follows that Aφ(t,x),(t′,x)(PV (x)) is

a sharp lower bound on φ(t,x),(t′,x)(PW (x)). Specifically, by Proposition 1 and Proposition 3 of

Duarte et al. (2023) we have that Aφ(t,x),(t′,x)(PV (x)) solves

argmin
PU\{UX}

h(PU\{UX}) subject to h(PU\{UX}) ∈ F(PV (x)) (P)

where h(PU\{UX}) is a polynomial in the probabilities Pr(U = u) for each U ∈ U \{UX}, such

that h(PU\{UX}) = φ(t,x),(t′,x) and F(PV (x)) is the feasible set defined by the axiomatic and

evidential constraints defined by PV (x), see Appendix A. Note that Proposition 3 of Duarte

et al. (2023) is used to exclude parameters Pr(UX = uX) from the program.

Now, notice that problem (P) is in terms of counterfactual distributions and therefore

appears a-priori incomputable. However, by the assumptions of Proposition 2, it follows that

PV (x) = PV |x, φ(t,x),(t′,x)(PW (x)) = φt,t′(PW |x)

where the both equalities are due to the fact that {V (x) : V ∈ V \ {X}} ⊥⊥ X by the

assumptions of this proposition and a standard application of consistency. Thus, we can cast

problem (P) into an equivalent problem whereby each evidential constraint Pr(V (x) = v) is

replaced by Pr(V = v | X = x) and we retain the same objective function. Mathematically,

this implies

Aφ(t,x),(t′,x)(PV (x)) = Aφt,t′ (PV |x)

which proves the result.

In practice, Proposition 2 permits the researcher using autobounds to ignore X when in-

stantiating the DAG in their Python program, and simply provide the conditional distribution

Pr(V \ {X} = v | X = x) as data. As the construction in the proof shows, one can do this

because X is disconnected from relevant nodes in G(x).

We are now ready to state the final result concerning the validity of the bounds.

Proposition 3. Suppose there exists an X satisfying the conditions of Proposition 2. Let

75



φt,t′(PW ) be a causally collapsible estimand with respect to PX . Then, the bounds

l =

∫
Aφt,t′ (PV |x) dPX , u =

∫
Aφt,t′ (PV |x) dPX

are valid bounds for φt,t′(PW ).

Proof. By Proposition 2, we know that
[
Aφt,t′ (PV |x),Aφt,t′ (PV |x)

]
is an interval which con-

tains φt,t′(PW |x). As PX is positive everywhere, the integral operator with respect to PX is

monotonic in its arguments. Since
∫
φt,t′(PW |x) dPX = φt,t′(PW ) by assumption, the result

follows.

Proposition 3 tells that averaging the covariate specific bounds for each x produces valid

bounds for the marginal estimand. To be clear, though, this result does not say that the

averaged bounds are sharp; the technical details of such a result are beyond the scope of this

paper and will be left to future work. However, as the covariate-specific bounds are sharp at

each x, this is the best one can achieve in the meantime, and provides adequate justification

for the quasi-Bayesian procedure presented above.

D Model specification for Kocher et al. (2011)

We use insurgent control measured in July 1969 as the sole instrument (a 5-level ordinal

variable ranging from full government control, Z = 1, to full insurgent control, Z = 5). The

IV analyses in Kocher et al. (2011) also utilize insurgent control in August as a secondary

instrument. We omit the second instrument for simplicity as replications show it does not

meaningfully change results. Using insurgent control in July only is consistent with many

other analyses presented by Kocher et al. (2011)—including all results in Tables 1–3 and 7 of

that work—which similarly do not consider insurgent control in August. Following numerous

analyses in the paper, we operationalize D as a binary measure of whether any bombs were

dropped within a two-kilometer radius of the hamlet.39 Consistent with the original work,

39See e.g. Table 1, Model 5C, and Tables 6–7; however, note that Kocher et al. (2011) also present results
that use the count of bombs.
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our outcome Y is a 5-level ordinal variable representing insurgent control of a hamlet in

December 1969.Finally, Kocher et al. (2011) adjust for a number of additional covariates,

X, including hamlet development level, population, distance to an international border, and

terrain roughness. In general, we emphasize that Kocher et al. (2011) present a variety of

specifications; we conduct an analysis that is consistent with their overall approach, but we

cannot rule out the possibility that our findings are due to these implementation differences.

We cut all control variables at the median or terciles, as appropriate, to obtain the coars-

ened versions X̃40. Throughout our analysis, hamlets are only compared if they exactly match

on all coarsened X̃ values.

E Problem Formulations

E.1 Instrumental Variables

We will primarily examine the simple IV case of Figure 2(a). To simplify the problem, we

transformed Kocher et al. (2011)’s measures of local control from a 5-point scale to binary

variables, coded as indicators for being above or below the median. We will show how both the

ATE and the LATE can be formulated as polynomial objective functions, using the simple

IV case. The problem formulations for the more complex multi-instrument Figure 2(c–d)

cases are similar; the approach generalizes straightforwardly to the multi-instrument setting,

though we note that in these problems, the mere definition of a “complier” is more complex

and researchers rarely state estimands in terms of local effects among the various complier

groups. Therefore, in the replication of Kocher et al. (2011), we target only the ATE.

In the simple IV graph, the disturbance UZ is responsible for determining only the response

function for Z. Because the structural equation for Z has no inputs besides the disturbance

UZ , supplying a disturbance value will deterministically produce Z = 0 or Z = 1. For ease

of reference, we will refer to these strata as Z-ctl or Z-enc. The disturbance UDY determines

40Hamlet development level, population, and distance to an international border are binned into terciles.
Terrain roughness is dichotomized by cutting at the median, as more than half of all hamlets have the lowest
possible terrain roughness score of zero.

77



the response functions for both D and Y jointly. We will first define the possible response

functions. For ease of reference, we use “V -always” and “V -never” (where V stands in for either

D or Y ) to respectively refer to response functions f
(UDY =uiDY )

V (a) = 1 and f
(UDY =uiiDY )

V (a) =

0, i.e. the individual types unaffected by treatment. Similarly, “V -comply” and “V -defy”

respectively refer to response functions f
(UDY =uiiiDY )

V (a) = a and f
(UDY =uivDY )

V (a) = 1−a, i.e. the

individual types whose behavior is affected by treatment. For both D and Y , we find four

individual types. Thus, UDY can produce 4 × 4 = 16 possible joint response functions for D

and Y : (D-never, Y -never), (D-never, Y -defy), (D-comply, Y -always), and so on. For a more

detailed example of this procedure, please review Appendix A.

Through this principal stratification procedure, we can now parametrize our model by

2+16 = 18 quantities, given by the strata probabilities Pr(Z-type), Pr(D-type, Y -type′) for the

types outlined in the previous paragraph. We remark that, as Duarte et al. (2023) notes, when

parametrizing the problem two parameters can be immediately eliminated due to axiomatic

probability constraints. That is, Pr(Z-ctl) + Pr(Z-enc) = 1 and
∑

Pr(D-type, Y -type′) = 1,

meaning that one Pr(Z-type) and one Pr(D-type, Y -type) are surplus to requirements. For

purposes of exposition, we will retain these superfluous parameters rather than eliminating

them.

Case 2(a): Simple IV

Structural Eq. Response Func. Response Form

Z = fZ(UZ) f
(UZ=uZ)
Z (∅) ∅ 7→ {0, 1}

D = fD(Z,UDY ) f
(UDY =uDY )
D (z) {0, 1} 7→ {0, 1}

Y = fY (d, UDY ) f
(UDY =uDY )
Y (d) {0, 1} 7→ {0, 1}

Case 2(b): No exclusion restriction

Structural Eq. Response Func. Response Form

Z = fZ(UZ) f
(UZ=uZ)
Z (∅) ∅ 7→ {0, 1}

D = fD(Z,UDY ) f
(UDY =uDY )
D (z) {0, 1} 7→ {0, 1}

Y = fY (d, Z, UDY ) f
(UDY =uDY )
Y (d, z) {0, 1}2 7→ {0, 1}
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Case 2(c): Kocher et al. (2011)

Structural Eq. Response Func. Response Form

Z7 = fZ7(UZ7) f
(UZ7

=uZ7
)

Z7
(∅) ∅ 7→ {0, 1}

Z8 = fZ8(Z7, UZ8) f
(UZ8

=uZ8
)

Z8
(z7) {0, 1} 7→ {0, 1}

X9 = fX9(Z8, UX9) f
(UX9

=uX9
)

X9
(z8) {0, 1} 7→ {0, 1}

D9 = fD9(Z7, Z8, UDY ) f
(UDY =uDY )
D9

(z7, z8) {0, 1}2 7→ {0, 1}

Y12 = fY12(X9, D9, UDY ) f
(UDY =uDY )
Y12

(x9, d9) {0, 1}2 7→ {0, 1}

Case 2(d): Kocher et al. (2011), relaxing exclusion restriction

Structural Eq. Response Func. Response Form

Z7 = fZ7(UZ7) f
(UZ7

=uZ7
)

Z7
(∅) ∅ 7→ {0, 1}

Z8 = fZ8(Z7, UZ8) f
(UZ8

=uZ8
)

Z8
(z7) {0, 1} 7→ {0, 1}

X9 = fX9(Z8, UX9) f
(UX9

=uX9
)

X9
(z8) {0, 1} 7→ {0, 1}

D9 = fD9(Z7, Z8, UDY ) f
(UDY =uDY )
D9

(z7, z8) {0, 1}2 7→ {0, 1}

Y12 = fY12(Z8, X9, D9, UDY ) f
(UDY =uDY )
Y12

(x9, d9) {0, 1}3 7→ {0, 1}

Estimand Polynomialization

In the main text, we considered two estimands for this problem, the ATE, τATE, and the

LATE, τLATE. By Proposition 1 we have that

τATE = E[Y (d = 1)− Y (d = 0)]

= Pr(Y (d = 1) = 1)− Pr(Y (d = 0) = 1)

=
∑

uZ∈S(UZ)
uDY ∈S(UDY )

1
{
f
(UDY =uDY )
Y (d = 1) = 1

}
· Pr(UZ = uZ) · Pr(UDY = uDY )

−
∑

uZ∈S(UZ)
uDY ∈S(UDY )

1
{
f
(UDY =uDY )
Y (d = 0) = 1

}
· Pr(UZ = uZ) · Pr(UDY = uDY )
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Notice that uZ varies in only one term independently of all others in the sum, therefore

we can factor it out. Since
∑

uZ
Pr(UZ = uZ) = 1, we can drop it from the sum entirely.

Interestingly, this is an example of a general phenomenon that if the downstream effect of the

exogenous disturbance is blocked from the variables in the query by the intervention, then

its parametrization contributes nothing to the polynomialization, see Proposition 3 in Duarte

et al. (2023). Thus

τATE =
∑

uDY ∈S(UDY )

1
{
f
(UDY =uDY )
Y (d = 1) = 1

}
· Pr(UDY = uDY )

−
∑

uDY ∈S(UDY )

1
{
f
(UDY =uDY )
Y (d = 0) = 1

}
· Pr(UDY = uDY )

In terms of strata frequencies (recall that since D and Y are confounded their types manifest

jointly), this is

=
∑
type

Pr(D-type, Y -comply) + Pr(D-type, Y -always)

−
∑
type

Pr(D-type, Y -defy) + Pr(D-type, Y -always)

=
∑
type

Pr(D-type, Y -comply)− Pr(D-type, Y -defy)

which becomes our polynomial objective function.

The second estimand we consider, τLATE, is more complex because it involves conditional

probabilities, which manifest as rational functions. We can address this issue with a sly trick,
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however, which we demonstrate below.

τLATE = E[Y (d = 1)− Y (d = 0)|D(z = 1) = 1, D(z = 0) = 0]

=
Pr(Y (d = 1) = 1, D(z = 1) = 1, D(z = 0) = 0)

Pr(D(z = 1) = 1, D(z = 0) = 0)

− Pr(Y (d = 0) = 1, D(z = 1) = 1, D(z = 0) = 0)

Pr(D(z = 1) = 1, D(z = 0) = 0)

=

∑
uZ∈S(UZ)

uDY ∈S(UDY )

1


f
(UDY =uDY )
Y (d = 1) = 1,
f
(UDY =uDY )
D (z = 1) = 1,
f
(UDY =uDY )
D (z = 0) = 0

 · Pr(UZ = uZ) · Pr(UDY = uDY )

∑
uZ∈S(UZ)

uDY ∈S(UDY )

1

{
f
(UDY =uDY )
D (z = 1) = 1,
f
(UDY =uDY )
D (z = 0) = 0

}
· Pr(UZ = uZ) · Pr(UDY = uDY )

−

∑
uZ∈S(UZ)

uDY ∈S(UDY )

1


f
(UDY =uDY )
Y (d = 1) = 1,
f
(UDY =uDY )
D (z = 1) = 1,
f
(UDY =uDY )
D (z = 0) = 0

 · Pr(UZ = uZ) · Pr(UDY = uDY )

∑
uZ∈S(UZ)

uDY ∈S(UDY )

1

{
f
(UDY =uDY )
D (z = 1) = 1,
f
(UDY =uDY )
D (z = 0) = 0

}
· Pr(UZ = uZ) · Pr(UDY = uDY )

Eliminating the blocked UZ ,

=

∑
uDY ∈S(UDY )

1


f
(UDY =uDY )
Y (d = 1) = 1,
f
(UDY =uDY )
D (z = 1) = 1,
f
(UDY =uDY )
D (z = 0) = 0

 · Pr(UDY = uDY )

∑
uDY ∈S(UDY )

1

{
f
(UDY =uDY )
D (z = 1) = 1,
f
(UDY =uDY )
D (z = 0) = 0

}
· Pr(UDY = uDY )

−

∑
uDY ∈S(UDY )

1


f
(UDY =uDY )
Y (d = 0) = 1,
f
(UDY =uDY )
D (z = 1) = 1,
f
(UDY =uDY )
D (z = 0) = 0

 · Pr(UDY = uDY )

∑
uDY ∈S(UDY )

1

{
f
(UDY =uDY )
D (z = 1) = 1,
f
(UDY =uDY )
D (z = 0) = 0

}
· Pr(UDY = uDY )
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In terms of strata frequencies, this is

=
Pr(D-comply, Y -comply) + Pr(D-comply, Y -always)∑

type Pr(D-comply, Y -type)

− Pr(D-comply, Y -defy) + Pr(D-comply, Y -always)∑
type Pr(D-comply, Y -type)

=
Pr(D-comply, Y -comply)− Pr(D-comply, Y -defy)∑

type Pr(D-comply, Y -type)

Standard optimization software upon which autobounds relies does not permit rational ob-

jective functions. To circumvent this issue we simply define an auxiliary variable s equal to

τLATE, where

s =
Pr(D-comply, Y -comply)− Pr(D-comply, Y -defy)∑

type Pr(D-comply, Y -type)
,

using which we can eliminate the fraction. Indeed, we specify the polynomial objective as: s,

which is a valid polynomial in the expanded parameter space that includes s, while adding

a single polynomial equality constraint that binds s to the target quantity (simply rearrange

the terms in the identity τLATE = s)

CτLATE
=


Pr(D-comply, Y -comply)− Pr(D-comply, Y -defy)

−s · Pr(D-comply, Y -never)− s · Pr(D-comply, Y -defy)

−s · Pr(D-comply, Y -comply)− s · Pr(D-comply, Y -always) = 0


Constraint Polynomialization

The second stage of this process is to set the constraints which confine the possible values the

estimand can take conditional on the given DGP and our assumptions. In particular, we will

use the strata parameterization to polynomialize three types of information: (i) probability

axioms; (ii) empirical evidence E that corresponds to observed quantities, and (iii) modeling

assumptions A.

The axiomatic constraints (“probabilities lie between zero and one and sum to unity”) are
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straightforwardly given by

CP =
{
Pr(Uk = uk) ≥ 0 : uk ∈ S(Uk), k ∈ {Z,DY }

}
∩
{∑

uk∈S(Uk)
Pr(Uk = uk) = 1 : k ∈ {Z,DY }

}
.

Equivalently,

Pr(Z-type) ≥ 0 ∀ type
∑
type

Pr(Z-type) = 1

Pr(D-type, Y -type′) ≥ 0 ∀ type, type′
∑

type,type′

Pr(D-type, Y -type′) = 1

The first axiom translates into 18 inequality constraints, and the second into 2 equality con-

straints. We collect constraints arising from the laws of probability in CP . As noted above,

for simplicity of exposition, we do not exploit equality constraints to eliminate optimization

variables and reduce the parameter space. However, it is important to note that doing so can

speed computation dramatically.

Next, we polynomialize the empirical evidence, E . Each piece of evidence is one of eight

observed probabilities of the form Pr(Z = z,D = d, Y = y). Each piece of evidence can be

polynomialized by

Pr(Z = z,D = d, Y = y)

=
∑

uZ∈S(UZ)
uDY ∈S(UDY )

1


f
(UZ=uZ)
Z (∅) = z,
f
(UDY =uDY )
D (z) = d,
f
(UDY =uDY )
Y (d) = y

 · Pr(UZ = uZ) · Pr(UDY = uDY )

which we collect in CE for all z, d, and y. For instance, in terms of strata frequencies, the cell

Pr(Z = 0, D = 0, Y = 0) is given by

Pr(Z-ctl)

(
Pr(D-never, Y -never) + Pr(D-never, Y -comply) +

Pr(D-comply, Y -never) + Pr(D-comply, Y -comply)

)
;
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the remaining seven are similar.

Finally, we turn to the polynomialization of modeling assumptions A. Formally, the mono-

tonicity or “no defiers” assumption is that Pr(D(z = 0) = 1, D(z = 1) = 0) = 0, which

polynomializes as

0 =
∑

uDY ∈S(UDY )

1

{
f
(UDY =uDY )
D (z = 1) = 0,
f
(UDY =uDY )
D (z = 0) = 1

}
· Pr(UDY = uDY )

In terms of strata frequencies, this constraint becomes

CA =

 0 = Pr(D-defy, Y -never) + Pr(D-defy, Y -defy)

+Pr(D-defy, Y -comply) + Pr(D-defy, Y -always)

 .

We remark that, in conjunction with the first-axiom constraint (nonnegativity), the constrain

in A implies

0 = Pr(D-defy, Y -type) ∀ type

which is a literal statement of the no-defiers assumption on treatment response to encourage-

ment, as expected.

To conclude, autobounds solves the problem

optimize
strata

τATE (16a)

subject to CP ∩ CE ∩ CA (16b)

for the ATE, and the following for the LATE

optimize
strata

s (17a)

subject to CτLATE
∩ CP ∩ CE ∩ CA, (17b)

which is expressed in Python code as follows
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1 # DAG for this problem is a modified IV graph with potential
2 # direct effect from encouragement Z to outcome Y
3 gotv_problem = causalProblem(
4 DAG("Z -> D, Z -> Y, D -> Y, U -> D, U -> Y", unob = "U")
5 )
6
7 # load data with Z/D/Y columns, one row per voting-age adult
8 gotv_data = pandas.read_csv("gotv_data.csv")
9
10 # all statements below are w.r.t. this problem
11 with respect_to(gotv_problem):
12
13 # give data to autobounds, prepare to compute 95% CI
14 read_data(gotv_data, inference=True)
15
16 # assume monotonicity: no "defiers" where plugging in
17 # encouragement Z=z causes opposite treatment, D(z)=1-z
18 p_defiers = p("D(Z=0)=1 & D(Z=1)=0")
19 add_assumption(p_defiers, "==", 0)
20
21 # restrict the scale of exclusion restriction violations
22 p_excl_restr_violation = edge_is_active("Z -> Y")
23 add_assumption(p_excl_restr_violation, "<=", 0.01)
24
25 # set estimand to be LATE: local ATE of D on Y conditional
26 # among "compliers" where encouragement Z=z causes same
27 # treatment, D(z)=z
28 set_ate(ind="D", dep="Y", cond="D(Z=0)=0 & D(Z=1)=1")
29
30 gotv_bounds = solve(ci=True, nsamples=1000)

Figure 15: Code for the instrumental variable analysis of the Get-out-the-vote experiment.

We also present the code for the problem in section 3.1.2 in Figure 16.
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1 # DAG for this problem is the IV graph
2 vietnam_problem = causalProblem(
3 DAG("Z -> D, D -> Y, U -> D, U -> Y", unob="U"),
4 number_values={"Z" : 5, "D" : 2, "Y" : 2}
5 )
6
7 # read in data with Z/D/Y columns + other covariates
8 vietnam_data = pandas.read_csv("vietnam_data.csv")
9 # create binarized outcome by cutting at threshold
10 # and converting resulting booleans to 0/1 integers
11 thresh = 3 # repeated for every threshold in 2-5
12 vietnam_data = vietnam_data.assign(
13 Y = (vietnam_data.Y_raw == thresh).astype(int)
14 )
15
16 covariates = ['control_sep', 'development', 'log_dist_to_border',
17 'terrain_roughness', 'log_population']
18 # all statements below are w.r.t. this problem
19 with respect_to(vietnam_problem):
20
21 # give data to autobounds, prepare to do
22 # covariate adjustment and compute 95% CI
23 read_data(
24 vietnam_data,
25 covariates = covariates,
26 inference = True
27 )
28
29 # look for min/max ATE values (estimated bounds),
30 # searching over all DGPs that are consistent
31 # with assumptions & obs data
32 vietnam_bounds = solve()
33 # result: infeasible (can't find any such DGPs)

Figure 16: Code for the reanalysis of Kocher et al. (2011) with instrumental variables.

E.2 Difference in Differences

E.2.1 Problem Formulation

Difference-in-differences is a strategy that involves at least three variables: pre-treatment

outcome Y0, treatment D, and post-treatment outcome Y1. Our estimand is the average

treatment effect on the treated (ATT)41 in the post period:

E[Y1(d = 1)|D = 1]− E[Y1(d = 0)|D = 1]. (18)

For simplicity we will first work with the minimal model in Figure 5(a), in which the

initial outcome Y0 is confounded with both treatment D and the subsequent outcome Y1, but

41By consistency, E[Y1(d = 1)|D = 1] = E[Y1|D = 1], so the first element of the estimand is immediately
identifiable. However, the second is not.
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does not have a direct causal effect. More complex causal models in which the pre-treatment

outcome has various effects on subsequent variables, such as those depicted in Figure 5(b), are

straightforward to accommodate with autobounds. We will further demonstrate how relax-

ations of the DID framework that use bracketing trends based on some auxiliary variable—a

framework that includes results such as monotone trends (discussed below; Hasegawa et al.,

2019; Ye et al., 2024)—are easily accommodated by autobounds. An example DGP for this

approach is given in Figure 5(c). In this subsection, for brevity, we will employ Proposition 1

to create the polynomial expressions but we will not simplify them in terms of strata fre-

quencies. For a fully simplified example of the polynomial procedure please refer back to the

IV section above. Finally, the code which implements this problem in Python is shown in

Figure 17.

Case 5(a): Simple DID

Structural Eq. Response Func. Response Form

Y0 = fY0(U) f
(U=u)
Y0

(∅) ∅ 7→ {0, 1}

D = fD(U) f
(U=u)
D (∅) ∅ 7→ {0, 1}

Y1 = fY1(D,U) f
(U=u)
Y1

(d) {0, 1} 7→ {0, 1}

Case 5(b): DID with Effects of Pre-treatment Outcome

Structural Eq. Response Func. Response Form

Y0 = fY0(U) f
(U=u)
Y0

(∅) ∅ 7→ {0, 1}

D = fD(Y0, U) f
(U=u)
D (y0) {0, 1} 7→ {0, 1}

Y1 = fY1(Y0, D, U) f
(U=u)
Y1

(y0, d) {0, 1}2 7→ {0, 1}

Case 5(c): Bracketing Trends in X

Structural Eq. Response Func. Response Form

X = fX(U) f
(U=u)
X (∅) ∅ 7→ {0, 1}

Y0 = fY0(U,X) f
(U=u)
Y0

(x) {0, 1} 7→ {0, 1}

D = fD(Y0, U) f
(U=u)
D (∅) ∅ 7→ {0, 1}

Y1 = fY1(X,D,U) f
(U=u)
Y1

(x, d) {0, 1}2 7→ {0, 1}
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Estimand Polynomialization

We polynomialize the estimand

τATT = E[Y1(d = 1)|D = 1]− E[Y1(d = 0)|D = 1]

=
Pr(Y1(d = 1) = 1, D = 1)

Pr(D = 1)
− Pr(Y1(d = 0) = 1, D = 1)

Pr(D = 1)

=

∑
u∈S(U) 1

{
f
(U=u)
Y1

(d = 1) = 1, f
(U=u)
D (∅) = 1

}
· Pr(U = u)∑

u∈S(U) 1
{
f
(U=u)
D (∅) = 1

}
· Pr(U = u)

−

∑
u∈S(U) 1

{
f
(U=u)
Y1

(d = 0) = 1, f
(U=u)
D (∅) = 1

}
· Pr(U = u)∑

u∈S(U) 1
{
f
(U=u)
D (∅) = 1

}
· Pr(U = u)

but we note that this is a rational expression and thus cannot be inserted directly into the

optimization routine. To handle this, we reuse the auxiliary variable trick from the LATE

setting in IV, and define a new parameter s such that s = τATT. Rearranging the above

expression we have the estimand constraint

CτATT
=

{
s ·
∑

u∈S(U) 1
{
f
(U=u)
D (∅) = 1

}
· Pr(U = u)

=
∑

u∈S(U) 1
{
f
(U=u)
Y1

(d = 1) = 1, f
(U=u)
D (∅) = 1

}
· Pr(U = u)

−
∑

u∈S(U) 1
{
f
(U=u)
Y1

(d = 0) = 1, f
(U=u)
D (∅) = 1

}
· Pr(U = u)

}
.

Constraint Polynomialization

First, constraints arising from the axioms of probability are now standard

CP =
{
Pr(U = u) ≥ 0 : u ∈ S(U)

}
∩
{∑

u∈S(U) Pr(U = u) = 1
}
.

Next, constraints arising from empirical evidence in the simple DID case of Figure 5(a) are

CE =

{
Pr(Y0 = y0, D = d, Y1 = y1) =

∑
u∈S(U)

1


f
(U=u)
Y0

(∅) = y0,
f
(U=u)
D (∅) = d,
f
(U=u)
Y1

(d) = y1

Pr(U = u)

}
.
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We omit the extensions to Figure 5(b–c) cases, which are largely identical.

Finally, we consider the assumption set the research might employ to narrow the bounds,

CA. We disucss two here. The first is the ubiquitous identification strategy for difference-in-

difference analyses is the use of the parallel trends assumption, which states that on average,

the post-treatment potential outcome under control, Y1(d = 0), will differ from the pre-

treatment outcome, Y0, by exactly the same amount for both treated and control groups.

That is,

E [Y1(d = 0)− Y0|D = 1] = E [Y1(d = 0)− Y0|D = 0] .

This is straightofrward to polynomialize. Indeed, parallel trends translates to

0 = Pr(Y1(d = 0) = 1|D = 1)− Pr(Y0 = 1|D = 1)

− Pr(Y1(d = 0) = 1|D = 0) + Pr(Y0 = 1|D = 0)

=

∑
u∈S(U) 1

{
f
(U=u)
Y1

(d = 0) = 1, f
(U=u)
D (∅) = 1

}
· Pr(U = u)∑

u∈S(U) 1
{
f
(U=u)
D (∅) = 1

}
· Pr(U = u)

−

∑
u∈S(U) 1

{
f
(U=u)
Y0

(∅) = 1, f
(U=u)
D (∅) = 1

}
· Pr(U = u)∑

u∈S(U) 1
{
f
(U=u)
D (∅) = 1

}
· Pr(U = u)

+

∑
u∈S(U) 1

{
f
(U=u)
Y1

(d = 0) = 1, f
(U=u)
D (∅) = 0

}
· Pr(U = u)∑

u∈S(U) 1
{
f
(U=u)
D (∅) = 0

}
· Pr(U = u)

−

∑
u∈S(U) 1

{
f
(U=u)
Y0

(∅) = 1, f
(U=u)
D (∅) = 0

}
· Pr(U = u)∑

u∈S(U) 1
{
f
(U=u)
D (∅) = 0

}
· Pr(U = u)

which creates a polynomial-fractional constraint with differing denominators, in which the

fraction can be cleared by further algebraic manipulation (for each fraction one auxiliary vari-

able, say s0 and s1, can be defined and manipulated as previously seen for rational functions;

we would need a further constraint that s1 − s0 = 0.)

An alternative strategy is to divide the control group into two groups on some variable,

X = 0 and X = 1, creating two observed trends in their outcomes. The treatment group’s
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trend is then assumed to be bracketed by the trends in the two control groups (Hasegawa

et al., 2019; Ye et al., 2024). That is,

E[Y1(d = 0)− Y0|D = 0, X = 0] ≤ E[Y1(d = 0)− Y0|D = 1] ≤ E[Y1(d = 0)− Y0|D = 0, X = 1]

The monotone trends approach of Hasegawa et al. (2019) is a special case of the bracketing

approach in which X = 1{Y0 ≥ θ} for some threshold θ.42 In this case, the key bracketing

assumption may be justified if the outcome follows a “rich-get-richer” pattern, such as an

exponential growth model.

These inequalities,

E [Y1(D = 0)− Y0|D = 0, X = x] 8 E [Y1(D = 0)− Y0|D = 1] ,

(where ⋆ is ≤ for x = 0 and ≥ for x = 1) then translate to

0 8 Pr[Y1(D = 0, X = x) = 1|D = 1]− Pr[Y0 = 1|D = 1]

− Pr[Y1(D = 0, X = x) = 1|D = 0, X = x] + Pr[Y0 = 1|D = 0, X = x]

8

∑
u∈S(U) 1

{
f
(U=u)
Y1

(d = 0, x) = 1, f
(U=u)
D (∅) = 1

}
· Pr(U = u)∑

u∈S(U) 1
{
f
(U=u)
D (∅) = 1

}
· Pr(U = u)

−

∑
u∈S(U) 1

{
f
(U=u)
Y0

(∅) = 1, f
(U=u)
D (∅) = 1

}
· Pr(U = u)∑

u∈S(U) 1
{
f
(U=u)
D (∅) = 1

}
· Pr(U = u)

+

∑
u∈S(U) 1

{
f
(U=u)
Y1

(d = 0, x) = 1, f
(U=u)
D (∅) = 0, f

(U=u)
X (∅) = x

}
· Pr(U = u)∑

u∈S(U) 1
{
f
(U=u)
D (∅) = 0, f

(U=u)
X (∅) = x

}
· Pr(U = u)

−

∑
u∈S(U) 1

{
f
(U=u)
Y0

(∅) = 1, f
(U=u)
D (∅) = 0, f

(U=u)
X (∅) = x

}
· Pr(U = u)∑

u∈S(U) 1
{
f
(U=u)
D (∅) = 0, f

(U=u)
X (∅) = x

}
· Pr(U = u)

where methods we have already illustrated to address rational functions would apply to in-

stantiate these constraints in practice. The code for instantiating and solving this problem in

42We note that this approach behaves poorly with binary data, as X then perfectly separates units with
Y0 = 0 and Y0 = 1 for θ ∈ (0, 1).
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1 # DAG for this problem allows confounding of treatment D
2 # and pre/post outcomes Ya/Yb
3 peru_problem = causalProblem(
4 DAG("U -> Ya, U -> D, U -> Yb, D -> Yb", unob="U")
5 )
6
7 # load data with D/Ya/Yb columns, one row per settlement
8 peru_data = pandas.read_csv("peru_data.csv")
9
10 # all statements below are w.r.t. this problem
11 with respect_to(peru_problem):
12
13 # give data to autobounds, prepare to compute 95% CI
14 read_data(peru_data, inference=True)
15
16 # assume treated & control trends are parallel
17 trend_treated = E("Yb(D=0)", cond="D=1") - E("Ya=1", cond="D=1")
18 trend_control = E("Yb(D=0)", cond="D=0") - E("Ya=1", cond="D=0")
19 add_assumption(trend_treated, "==", trend_control)
20
21 # set estimand to be ATT: local ATE among treated (D=1)
22 set_ate(ind="D", dep="Yb", cond="D=1")
23
24 # calculate bounds
25 peru_bounds = solve(ci=True, nsamples=1000)

Figure 17: Code for the analysis of the Peruvian Civil War problem with DiD.

autobounds is given in Figure 17.

E.3 Selection Bias

In this subsection we outline the formulation of the polynomial program for the case of selection

bias studied in section 3.3. For brevity, we make some omissions of standard steps in the

procedure which are explained fully in section E.1. Please see Figure 18 for the code to

implement the selection bias problem in autobounds.

E.3.1 Problem Formulation

Structural Eq. Response Func. Response Form

D =fD(UD) f
(UD=uD)
D (∅) ∅ 7→ {0, 1}

M =fM(D,UMY ) f
(UMY =uMY )
M (d) {0, 1} 7→ {0, 1}

Y =fY (d,M,UMY ) f
(UMY =uMY )
Y (d,m) {0, 1}2 7→ {0, 1}
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Estimand Polynomialization

The primary objective function is the ATE among detained individuals,

ATEM=1 = E[Y (d = 1)− Y (d = 0)|M = 1]

= E[Y (d = 1,M(d = 1))− Y (d = 0,M(d = 0))|M = 1].

Consider the term E[Y (d,M(d)) |M = 1] for any d. We may write this as

E[Y (d,M(d)) |M = 1] = Pr(Y (d,M(d) = 1 |M = 1)

=
∑
d′

Pr(Y (d,M(d)) = 1 | D = d′,M(d′) = 1)Pr(D = d′ |M = 1)

=
∑
d′,m

{
Pr(Y (d,M(d)) = 1 | D = d′,M(d′) = 1,M(1− d′) = m)

Pr(M(1− d′) = m | D = d′,M(d′) = 1)Pr(D = d′ |M = 1)

}
=
∑
d′,m

{
Pr(Y (d,M(d)) = 1, D = d′,M(d′) = 1,M(1− d′) = m)

Pr(D = d′,M(d′) = 1)

Pr(M(1− d′) = m,D = d′,M(d′) = 1)

Pr(D = d′,M(d′) = 1)

Pr(M(d′) = 1, D = d′)

Pr(M = 1)

}
=
∑
d′,m

{
Pr(Y (d,M(d)) = 1, D = d′,M(d′) = 1,M(1− d′) = m)

Pr(D = d′,M(d′) = 1)

Pr(M(1− d′) = m,D = d′,M(d′) = 1)

Pr(M = 1)

}
.

For example, when d = 1, the above reduces to

Pr(Y (d = 1,m = 1) = 1, D = 0,M(d =) = 1,M(d = 1) = 1)

Pr(D = 0,M(d = 0) = 1)

Pr(M(d = 1) = 1, D = 0,M(d = 0) = 1)

Pr(M = 1)

+
Pr(Y (d = 1,m = 1) = 1, D = 1,M(d = 1) = 1,M(d = 0) = 0)

Pr(D = 1,M(d = 1) = 1)

Pr(M(d = 0) = 0, D = 1,M(d = 1) = 1)

Pr(M = 1)

+
Pr(Y (d = 1,m = 1) = 1, D = 1,M(d = 1) = 1,M(d = 0) = 1)

Pr(D = 1,M(d = 1) = 1)

Pr(M(d = 0) = 1, D = 1,M(d = 1) = 1)

Pr(M = 1)

since the Y (d′,m) term is eliminated when d′ = 0 and m = 0. It is now straightforward to

polynomialize these terms; we omit the detailed calculations for brevity. The d = 0 case is
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handled similarly.

Constraint Polynomialization

Probability constraints in CP are standard. The observed data consists only of Pr(D = d, Y =

y|M = 1). Therefore, constraints in CE take the form for each d and y

Pr(D = d, Y = y|M = 1) =

∑
uD∈S(UD)

uMY ∈S(UMY )

1


f
(UMY =uMY )
Y (d,m = 1) = y,
f
(UMY =uMY )
M (d) = 1,
f
(UD=uD)
D (∅) = d

 · Pr(UMY = uMY )

∑
d′∈S(D)

uMY ∈S(UMY )

1
{
f
(UMY =uMY )
M (d′) = 1

}
· Pr(UMY = uMY )

Next we compile the constraints from expert assumptions, CA.

First, assumption 3.3.1 (mediator monotonicity) which states that Pr[M(d = 1) = 0,M(d =

0) = 1] = 0, or

0 =
∑

uMY ∈S(UMY )

1

 f
(UMY =uMY )
M (d = 1) = 0,

f
(UMY =uMY )
M (d = 0) = 1

 · Pr(UMY = uMY )

for each d.

Second, assumption 3.3.2 (relative non-severity of racial stops) which is given by Pr[Y (d,m) =

1|D = d′,M(1) = 1,M(0) = 1] ≥ Pr[Y (d,m) = 1|D = d′,M(1) = 1,M(0) = 0]. We translate
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this as

0 ≥

∑
uD∈S(UD)

uMY ∈S(UMY )

1


f
(UMY =uMY )
Y (d,m) = 1,

f
(UD=uD)
D (∅) = d′,

f
(UMY =uMY )
M (d = 1) = 1,

f
(UMY =uMY )
M (d = 0) = 0

 · Pr(UDY = uDY )

∑
uD∈S(UD)

uMY ∈S(UMY )

1


f
(UD=uD)
D (∅) = d′,

f
(UMY =uMY )
M (d = 1) = 1,

f
(UMY =uMY )
M (d = 0) = 0

 · Pr(UDY = uDY )

−

∑
uD∈S(UD)

uMY ∈S(UMY )

1


f
(UMY =uMY )
Y (d,m) = 1,

f
(UD=uD)
D (∅) = d′,

f
(UMY =uMY )
M (d = 1) = 1,

f
(UMY =uMY )
M (d = 0) = 1

 · Pr(UDY = uDY )

∑
uD∈S(UD)

uMY ∈S(UMY )

1


f
(UD=uD)
D (∅) = d′

f
(UMY =uMY )
M (d = 1) = 1,

f
(UMY =uMY )
M (d = 0) = 1

 · Pr(UDY = uDY )

where the complaint is duplicated for each (d, d′,m) triple.
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1 police_problem = causalProblem(
2 DAG("D -> M, D -> Y, M -> Y, U -> M, U -> Y", unob="U")
3 )
4
5 # load data with D/Y columns, one row per police-civ encounter
6 # (only recorded if stop is made, so M=1 for all rows)
7 police_data = pandas.read_csv("police_data.csv")
8
9 # all statements below are w.r.t. this problem
10 with respect_to(police_problem):
11
12 # give data to autobounds and
13 read_data(police_data, cond="M=1")
14
15 # assume no force would be used if stop was not made
16 force_used_if_stop_not_made = p("Y(M=0)=1")
17 add_assumption(force_used_if_stop_not_made, "==", 0)
18
19 # assume no anti-white bias in stopping (encounters where
20 # (white civs would be stopped but minority civs would not)
21 anti_white_stop = p("M(D=0)=1 & M(D=1)=0")
22 add_assumption(anti_white_stop, "==", 0.0)
23
24 # assume that potential force is lower on average
25 # in "racial stops" (discretionary, stop made iff civ is minority)
26 # than in "always stops" (mandatory, stop made for any civ race)
27 racial_stop = "M(D=0)=0 & M(D=1)=1" # M(d)=1 if and only if d=1
28 always_stop = "M(D=0)=1 & M(D=1)=1" # M(d)=1 for all races d
29 # state assumption when white civs are placed in these scenarios
30 avg_force_if_white_among_racial_stops = E("Y(D=0, M=1)", cond=racial_stop)
31 avg_force_if_white_among_always_stops = E("Y(D=0, M=1)", cond=always_stop)
32 add_assumption(
33 average_force_if_white_among_racial_stops,
34 "<=",
35 average_force_if_white_among_always_stops
36 )
37 # state assumption when minority civs are placed in these scenarios
38 avg_force_if_minority_among_racial_stops = E("Y(D=1, M=1)", cond=racial_stop)
39 avg_force_if_minority_among_always_stops = E("Y(D=1, M=1)", cond=always_stop)
40 add_assumption(
41 average_force_if_minority_among_racial_stops,
42 "<=",
43 average_force_if_minority_among_always_stops
44 )
45
46 # calculations based on Gelman, Fagan, Kiss (2007) data implies
47 # that among stops of black civs, 32% are "racial stops" that
48 # would not have occurred if white civs were placed in same
49 # scenarios (remaining 68% are "always stops")
50 p_racial_stops_among_all_minority_stops = p("M(D=0)=0", cond = "D=1 & M=1")
51 add_assumption(p_racial_stops_among_all_minority_stops, "==", 0.32)
52
53 # set estimand to be ATE conditional on the subset
54 # of police-civ encounters where a stop was made
55 set_ate("D", "Y", cond="M=1")
56
57 # calculate bounds
58 police_bounds = solve(ci=True, nsamples=1000)

Figure 18: Code for the study of bias in police use of force.
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E.4 Mediation

E.4.1 Formal Background

Here we provide a formal description of the estimands involved in standard mediation designs

and the technical challenges for their identification. For the sake of simplicity, we assume

the treatment is binary and all other variables are discrete. In the pursuit of quantifying

causal mechanisms, scholars have aimed to identify three key quantities: the controlled direct

effect (CDE), the natural indirect effect (NIE) and the natural direct effect (NDE), these are

respectively

CDE(m) := E[Y (d = 1,m)− Y (d = 0,m)],

NIE(d) := E[Y (d,M(d = 1))− Y (d,M(d = 0))],

NDE(d) := E[Y (d = 1,M(d))− Y (d = 0,M(d))].

We summarize these estimands in turn. Firstly, the CDE measures the effect of the treatment

on the outcome when the mediator is held constant at a specific value. In effect, this quantity

allows researchers to isolate the direct effect of the treatment, unaffected by changes in the

mediator, that is, the pathwayD →M → Y is blocked by intervening onM (Pearl et al., 2001;

Robins et al., 2003)—it is a measure of the interaction of the treatment and the mediator on the

outcome. Secondly, the NIE quantifies the portion of the treatment effect that is explained by

the mediator. To see this, note that NIE(d) is non-zero whenever a non-trivial causal effect of

the treatment on the mediator, that isM(1) ̸=M(0), causes a change in the outcome. Holding

treatment level fixed, this is exactly the pathway D → M → Y in Figure 8. This concept

is of great theoretical interest for understanding the role of the mediator in transmitting the

treatment effect, as the mediator is not manipulated but naturally experienced. This intuition

elucidates the contrast between the NIE and the CDE: it is generally understood that the NIE

better explains causal mechanisms because the mediator is permitted to vary naturally in this

estimand, however, if one were to aiming to understand interventional policy, the CDE is

preferred, since the mediator is fixed by the researcher (Pearl, 2012; Acharya et al., 2016).

Thirdly, the NDE captures the portion of the treatment effect that is not mediated by the

mediator, representing the direct pathway (D → Y ) from the treatment to the outcome, this
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readily understood by the noticing that M is held fixed in both counterfactual terms.43 This

concept is important for understanding the direct influence of the treatment, separate from its

indirect effects (Robins and Greenland, 1992). Finally, notice that the global ATE is related

to the mediated effects through

ATE = NIE(1) + NDE(0).

That is, the total effect of treatment can be additively decomposed into its direct and indirect

effects with respect to a given mediator,M ; this decomposition makes clear why the mediated

effects are the ideal target for explaining causal relationships between two variables.

In an experimental setting, if one can randomize D and M , the CDE is clearly identi-

fied. However, the NIE and NDE are far more difficult to capture, even with randomization.

This is because there is no experiment in which one can design a manipulation to generate

Y (d,M(d′)) where d ̸= d′. We need stricter assumptions than those guaranteed by design.

Most commonly, mediation designs produce valid inferences under four assumptions which

the treatment, mediator and outcome must satisfy; these are: (i) no treatment-outcome con-

founding; (ii) no treatment-mediator confounding; (iii) no (pre-treatment) mediator-outcome

confounding, and (iv) the absence of alternative mediators which confound the mediator and

outcome relationship. If one can believe that the treatment was successfully randomized in

the sample or one possesses a sufficiently rich set of pre-treatment covariates, (i) and (ii) are

satisfied. Assumptions (iii) and (iv) are the most pernicious, particularly because they can be

easily violated even in an experimental setting. Indeed, in the social sciences, the mediator is

often a belief or emotion whose manipulation might be randomized but whose measurement

is post-treatment. Due to the ephemeral nature of these objects, it makes difficult both their

accurate measurement, and the prevention of alternative explanations for (in)direct effects

induced by the treatment. Even if these alternate mediators are measured, identification

remains a challenge (Avin et al., 2005; Robins et al., 2022; Tchetgen Tchetgen and Van-

derWeele, 2014; Vansteelandt and Daniel, 2017). In the mediation literature, assumptions

43Note that the ability to compute this quantity does not exclude the possibility of other mediators lying
on the direct path D → Y .
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(i)-(iv) are together referred to as sequential ignorability. This is because these assumptions

are equivalent to believing that following randomization of treatment, the mediator is effec-

tively randomly assigned within each treatment group (VanderWeele and Vansteelandt, 2009;

Imai et al., 2010).

E.4.2 On the Manipulation Exclusion

The parallel design aims to permit the researcher to identify causal mechanisms in a milder

setting than that prescribed by sequential ignorability (Imai et al., 2010, 2011). However,

one assumption of this design is quite opaque in its precise description, and so we offer a

softer explanation of its importance. To do so, we first specify the causal model governing the

parallel design

E = fE(UE), M = fM(D,E,UMY ),

D = fD(UD), Y = fM(D,E,M,UMY ).

When conducting the parallel design, we generate models for the natural arm

E = 0, M(d, e = 0) = fM(d, e = 0, UMY ),

D = d, Y (d,M(d, e = 0), e = 0) = fY (d,M(d, e = 0), e = 0, UMY ),

(19)

and the manipulated arm

E = 1, M = m,

D = d, Y (d,m, e = 1) = fY (d,m, e = 1, UMY ).

(20)

The manipulation exclusion assumption implies that whenever M(d, e = 0) in the natural

model takes on the value m to which M is set in the manipulated model, Y (d,M(d, e =

0), e = 0) = Y (d,m, e = 0) = Y (d,m, e = 1). That is, Y (d,m, e) is constant in e. As the

name suggests, this is a type of exclusion restriction, the like of which was already presented in

section 3.1 on instrumental variables. This assumption suppresses the direct causal effect of E

on Y ; the experimental manipulation may only affect Y through its effect on M . Permitting

E to only indirectly affect Y makes clear why assumption 3.4.1 is effectively equivalent to
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ensuring that participants are unaware of their being manipulated. Indeed, this assumption

encodes that the participant’s decision is the same whether they infer that M = m naturally

or are explicitly told as such. For example, in the study by Tomz and Weeks (2013), this

assumption might be violated if the mediator manipulation in some manner suggested which

countries were democracies or autocracies. In this way, participants may then erroneously

infer that the study itself is about the threat that these specifc nations pose to the US or

Britain and therefore put increased weight on the threat cue in this arm but would ignore

this context in arms where this information is obscured. Clearly, this assumption is crucial,

since if it were violated, groups in the natural and manipulated arms are not comparable: the

hidden mechanism by which the participants interpret the mediator is known to be different

between arms in such a case.

With this assumption in hand, the natural model becomes

E = 0, M(d, e = 0) = fM(d, e = 0, UMY )

D = d, Y (d,M(d, e = 0)) = fY (d,M(d, e = 0), UMY ),

(21)

while the manipulated model is

E = 1, M = m

D = d, Y (d,m) = fY (d,m,UMY ),

(22)

and thus we need only deal with counterfactuals of the form Y (d,m).

E.4.3 Eliminated Effects

As discussed in the main text, Acharya et al. (2018) advocates the use of the eliminated

effect to quantify the effects of causal mechanisms. This is largely due to the fact that the

designs permits the identification of its two components, the ATE and the CDE. Indeed, the

eliminated effect is defined as

EE(m) = ATE − CDE(m). (23)
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Clearly, by randomization of D in the natural arm the first term is identified, and the ran-

domization of D and M in the manipulated arm identifies the second term. To explain why a

researcher might be interested in this estimand, the authors provide the following decompo-

sition of the eliminated effect

EE(m) = NIE(1) + RI(m). (24)

where RI(m) = NDE(0) − CDE(m). This result follows immediately by noting that ATE =

NIE(1) + NDE(0) as discussed in the previous section. The presence of mediated effects

masked beneath the EE is now obvious, however, we give some intuition as to why one might

find this estimand useful.

We will ground this exposition by the Tomz and Weeks (2013) setting. The NIE quantifies

the portion of the effect of regime type on support for a preemptive strike that is explained

by changes in how threatening the country is perceived to be. It isolates the indirect pathway

where the regime type influences the perception of threat, and this perception, in turn, influ-

ences the level of support for a preemptive strike. The reference interaction is the difference

between the direct effect of treatment with the mediator at its natural value under an auto-

cratic regime and the direct effect of the treatment with the mediator fixed at level m. Noting

that the NDE is a weighted average of the CDEs over the natural level of the mediator44, the

RI explains the amount of variation in the CDE due to natural variation in the mediator (at

some baseline m). It is the part of the total effect due to interaction alone (Acharya et al.,

2018). To illustrate this, return to the setting of Tomz and Weeks (2013): if we set m = 0,

so the hypothetical country in question is known to be nonthreatening, the RI is the differ-

ence between the direct effect of democracy on support for attack under inferred threat and

the same direct effect if the country is known to be nonthreatening. This difference is thus

the part of the direct effect explained by how much the treatment and mediator manifest in

tandem: indeed, if there is no such interaction, then the NDE is equal to the CDE so the RI

vanishes, however, if RI(0) < 0 (say), then we can conclude that a decrease in support for a

44NDE(d) =
∑

m∈S(M) E[Y (1,m)− Y (0,m) |M(d) = m] Pr(M(d) = m)
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preemptive strike on a democratic nation is smaller under inferred threat, than under known

threat.

Eliminated effects are easy targets since they are identified under mild assumptions. How-

ever, the question which most frequently drives scientific inquiry is the NIE, which is masked

by this estimand. Acharya et al. (2018) argue that a large EE is indicative of a strong medi-

ating factor, however, the exact manner in which it operates remains unknown. For example,

the replication study finds a large and positive EE which suggests that support for an attack

on a democracy is significantly mediated by the belief that the country is a threat. However,

it is unclear how one might reconcile this result with the original finding in Tomz and Weeks

(2013), which reports a negative indirect effect of democracy on support for a strike. Indeed,

Acharya et al. (2018) proposes two reasons for this discrepancy, both of which stem from

speculation on the magnitude and sign of the NIE or RI. We summarise these explanantions

here. One explanation is that the reference interaction could be large and positive. This

implies that, relative to a direct effect under a fixed threatening country baseline (which is

negative), the direct effect of democracy (as opposed to autocracy) on support for an attack

under inferred threat is lower in magnitude (that is, less negative). This seems unlikely, since

it would suggest that the participants assumed a threat more significant than the one pro-

vided to them, which could occur if the participants were somehow primed to believe that the

hypothetical country in question directly threatens America, but no such prime was adminis-

tered. Acharya et al. alternatively suggest that due to the original study having employed a

standard mediation analysis assuming sequential ignorability, their estimate is biased, and so

the indirect effect could be nonnegative.

In the main text, we resolve this discrepancy through autobounds, which shows that

under the mild sub-interaction assumption, the second explanation prevails. In particular,

by directly targeting the desired mediated effects, our partial identification strategy yields

informative bounds on the question of interest.
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E.4.4 Problem Formulation

We build the polynomial program for the mediation problem as for all other problem types.
For a more detailed explanation of how to build these polynomials see the IV example in
Appendix E.1. The code for this example is in Figure 19. The DGP in which we wish to do
inference is given by Figure 9(a). Explicitly, we have

Structural Eq. Response Func. Response Form

E =fE(UE) f
(UE=uE)
E (∅) ∅ 7→ {0, 1}

D =fD(UD) f
(UD=uD)
D (∅) ∅ 7→ {0, 1}

M =fM(D,E,UMY ) f
(U=u)
M (d, e) {0, 1}2 7→ {0, 1}

Y =fY (d,M,UMY ) f
(U=u)
Y (d,m) {0, 1}2 7→ {0, 1}

Estimand Polynomialization

Here, we will show the problem formulation for the NIE, the NDE is similar. Indeed the

objective function of the problem is

NIE(1) = E[Y (d = 1,M(d = 1))− Y (d = 1,M(d = 0))],

We now write this estimand in terms of the disturbances. The first term is

Pr(Y (d = 1) = 1) =
∑

m∈S(M)

Pr(Y (d = 1,M(d = 1)) = 1,M(d = 1) = m)

=
∑

m∈S(M)

∑
u∈S(U)

1

 f
(U=u)
M (1,m) = 1,

f
(U=u)
Y (1) = m

Pr(U = u).

while the second is

Pr(Y (1,M(0)) = 1) =
∑

m∈S(M)

Pr(Y (1,M(0)) = 1,M(0) = m)

=
∑

m∈S(M)

∑
u∈S(U)

1

 f
(U=u)
M (1,m) = 1,

f
(U=u)
Y (0) = m

Pr(U = u).
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Constraint Polynomialization

The constraints, CP , due to probability axioms are standard. Consider next the observed

data, CE . The observed data takes the form Pr(Y = y,D = d | E = 0) and Pr(Y = y,D =

d,M = 1 | E = 1). To constrain our strata frequencies by these quantities observe that by

randomization of E and assumption 3.4.2

Pr(Y (d) = y) = Pr(Y = y | D = d,E = 0),

therefore, expanding the LHS

Pr(Y = y | D = d,E = 0) =
∑

m∈S(M)

∑
uD∈S(UD)

1

 f
(U=u)
M (d) = m

f
(U=u)
Y (d,m) = y

Pr(U = u).

Similarly, by randomization of E and assumption 3.4.2 again

Pr(Y (d,m) = y) = Pr(Y = y | D = d,M = m,E = 1),

and so by expanding the LHS

Pr(Y = y | D = d,M = 1, E = 1) =
∑

u∈S(U)

1
{
f
(U=u)
Y (d,m = 1) = y

}
Pr(U = u).

Finally, we create the assumption set CA. We add the sub-interaction assumption ψY as a

constraint. Since

Pr(Y (1, 0) = y10, Y (0, 0) = y00, Y (1, 1) = y11, Y (0, 1) = y01) =

∑
u∈S(U)

1



f
(U=u)
Y (1, 0) = y10,

f
(U=u)
Y (0, 0) = y00,

f
(U=u)
Y (1, 1) = y11,

f
(U=u)
Y (0, 1) = y01,


Pr(U = u),
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1 dempeace_problem = causalProblem(
2 DAG("D -> M, M -> Y, D -> Y, U -> M, U -> Y", unob="U")
3 )
4
5 # load data with D/M/Y columns, one row per respondent
6 dempeace_data = pandas.read_csv("dempeace_data.csv")
7
8 # data_do: a function which creates counterfactual probs from expt data, see notebooks
9 dempeace_doD = data_do(dempeace_data[dempeace_data["E"]==0], ["D"])
10 dempeace_doDM = data_do(dempeace_data[dempeace_data["E"]==1], ["D", "M"])
11
12 with respect_to(med_problem):
13 # add experimental data as constraints
14 for i in range(len(dempeace_doD)): # loop through rows of experimental summary
15 D_val = dempeace_doD.loc[i, "D"] # identify D val
16 Y_val = dempeace_doD.loc[i, "Y"] # identfiy Y val
17 prob_val = dempeace_doD.loc[i, "prob"] # empirical probability
18
19 add_assumption(
20 p(f"Y(D={D_val})={Y_val}"), "==", prob_val
21 )
22
23 for i in range(len(dempeace_doDM)):
24 D_val = dempeace_doDM.loc[i, "D"]
25 M_val = dempeace_doDM.loc[i, "M"]
26 Y_val = dempeace_doDM.loc[i, "Y"]
27 prob_val = dempeace_doDM.loc[i, "prob"]
28
29 add_assumption(
30 p(f"Y(D={D_val},M={M_val})={Y_val}"), "==", prob_val
31 )
32
33 # gamma is the proportion of people whose direct effect would be
34 # larger when the threat is diminished,
35 # expect to be small or even 0, see main text and notebooks
36 add_subinteraction(strength=gamma)
37
38 # NIE
39 nie_plus = E("Y(D=1)")
40 nie_minus = p("Y(D=1,M=1)=1 & M(D=0)=1") + p("Y(D=1,M=0)=1 & M(D=0)=0")
41 nie = nie_plus - nie_minus
42 set_estimand(nie)
43 dempeace_bounds = solve(ci=True)

Figure 19: Code for the mediation analysis of the Democratic Peace survey experiment.

it follows that

ψY =
∑

y10,y00,y11,y01∈S(Y ):
y10−y00>y11−y01

∑
u∈S(U)

1



f
(U=u)
Y (1, 0) = y10,

f
(U=u)
Y (0, 0) = y00,

f
(U=u)
Y (1, 1) = y11,

f
(U=u)
Y (0, 1) = y01,


Pr(U = u)

We then add the constraint ψY ≤ γψY
to the polynomial program for user-selected γψY

.
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E.4.5 Inference in the Parallel Design

In appendix C.2, we illustrate how to compute inference on the bounds (φ, φ) of estimand φ

when provided with the observed data law PV parameterized by θV . The procedure adopts

a quasi-Bayesian framework, whereby we impose a Dirichlet prior on θV , obtain its posterior

using the observed data to produce the likelihood, and then by sampling from the posterior

and applying autobounds, we obtain a distribution over the upper and lower bounds of the

estimand, whence we can compute confidence intervals.

Parallel designs, as explained in section 3.4, may not provide the analyst with empirical

samples of PV . In the case of Acharya et al. (2018), the analyst would only obtain samples

from conditional margins of PV , in particular, (i) PV (D = d, Y = y | E = 0) from the natural

arm, and (ii) PV (D = d, Y = y | M = 1, E = 1) from the manipulated arm. The natural

arm only produces (i) because the authors chose not to measure M in this arm, while the

manipulated arm we only obtain (ii) because the authors only set M = 1 in their survey roll-

out. If one is interested only in EE(1), the authors’ implementation is acceptable, since these

data identify that quantity. However, if one wishes to target mediated effects, two challenges

arise. First, the absence of data on any marginal or conditional distribution of M makes it

imprudent to place priors on PV (d,m, y): neither this distribution nor any parametrization of

it is fully identified by the collected data, meaning that large regions of the posterior would

be driven entirely by the prior chosen. In order to use the transparent parametrization of

Richardson et al. (2011), we must adapt the procedure in section C.2. Secondly, many cells of

PV are missing in this design, making it difficult to obtain informative bounds on the estimand

without additional assumptions. Consequently, estimated and confidence bounds are wider

than those that would be obtained if complete samples of PV were available. In the survey

setting of Acharya et al. (2018), it would be inexpensive to modify the natural-arm design

to measure M and the mediator-arm design to randomize M , making complete samples from

PV available. In future work, we recommend that analysts collect data on all variables and

conditions in each arm to avoid this problem.

As discussed above, θV is not available for this design, we do not supply it as an argument
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to autobounds. Rather, by using the following facts from Appendix E.4.4,

PW (Y (d) = y) = PV (Y = y | D = d,E = 0) (25)

and

PW (Y (d,m = 1) = y) = PV (Y = y | D = d,M = 1, E = 1), (26)

we can manually constrain the strata which combine to produce φ via the equations above.

Now, let θnat and θman contain the four parameters on the RHS of (25) and the four parameters

on the RHS of (26) respectively.

Since the bounds on the estimand (NIE or NDE) φ are computed as [A(θnat,θman),

A(θnat,θman)], we simply apply the quasi-Bayesian framework outlined in appendix C.2 ap-

plied to inputs θnat and θman. That is: (1) place a uniform Dirichlet prior on θnat and a

separate uniform Dirichlet prior on θman; (2) sample from their posteriors; (3) for each pair of

samples (θ∗
nat,θ

∗
man) from their posteriors, compute the posterior bounds sample (φ∗, φ∗); and,

(4), obtain 100(1− α)% confidence intervals by taking quantiles of the resulting distribution

over the bounds. We are justified in treating the two parameters independently because of

the design. Randomization on E partitions the sample into two independent groups, each

governed by a distinct causal model (see Figure 9). In particular, in the E = 1 arm, the medi-

ator M is set by the researcher, severing backdoor paths through unmeasured confounders U .

This effectively removes U from the outcome model in that arm, preventing any dependence

between θnat and θman. See Figure 11 for an illustration of the results.

106


	Introduction
	Partial Identification with autobounds
	Preliminaries
	A Simple Example with Classic Confounding

	Applications
	Instrumental Variables
	Replication and Extension of coppock2016voting
	Replication and Extension of kocher2011aerial

	Difference in Differences
	Replication and Extension of schubiger2021state

	Selection Bias
	Replication and Extension of KnoxLoweMummolo2020

	Mediation Analysis
	Replication and Extension of aviditacharya-2018-analyzingcausalmechanisms


	Discussion and Conclusion
	Detailed Example with autobounds
	Simulated Data for Section 2.2

	Additional Sensitivity Analyses for Instrumental Variables
	Practical Considerations: Statistical Uncertainty and Covariate Adjustment
	Preliminaries
	Statistical Uncertainty
	Uncertainty Quantification without Covariates
	Alternative Approaches to Uncertainty Quantification

	Covariate Adjustment
	Validity of Covariate-averaged Bounds.


	Model specification for kocher2011aerial
	Problem Formulations
	Instrumental Variables
	Difference in Differences
	Problem Formulation

	Selection Bias
	Problem Formulation

	Mediation
	Formal Background
	On the Manipulation Exclusion
	Eliminated Effects
	Problem Formulation
	Inference in the Parallel Design



