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ABSTRACT
Social and medical scientists are often concerned that the external validity of experimental results may be
compromised because of heterogeneous treatment effects. If a treatment has different effects on those who
would choose to take it and those who would not, the average treatment effect estimated in a standard
randomized controlled trial (RCT) may give a misleading picture of its impact outside of the study sample.
Patient preference trials (PPTs), where participants’ preferences over treatment options are incorporated
in the study design, provide a possible solution. In this paper, we provide a systematic analysis of PPTs
based on the potential outcomes framework of causal inference. We propose a general design for PPTs with
multi-valued treatments, where participants state their preferred treatments and are then randomized into
either a standard RCT or a self-selection condition. We derive nonparametric sharp bounds on the average
causal effects among each choice-based subpopulation of participants under the proposed design. We also
propose a sensitivity analysis for the violation of the key ignorability assumption sufficient for identifying
the target causal quantity. The proposed design and methodology are illustrated with an original study
of partisan news media and its behavioral impact. Supplementary materials for this article, including a
standardized description of the materials available for reproducing the work, are available as an online
supplement.
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1. Introduction

Randomized controlled trials (RCTs) are widely used in the
social and medical sciences to estimate the causal effects of treat-
ments of interest. The random assignment of treatments ensures
the internal validity of the study, in the sense that observed
differences in the distribution of outcomes between randomized
treatment groups can be interpreted as causal effects of the
treatments. Carefully controlled randomization, however, often
comes at the cost of external validity. That is, conclusions from
RCTs may not generalize to situations outside of that particu-
lar experiment. Without sufficient external validity, RCTs are
not informative about the substantive, real-world questions in
which scientists and practitioners are ultimately interested.

In RCTs, preferences of experimental subjects over treatment
options often play an important role. Even in a well-controlled
study on a representative sample from the target population,
heterogeneity of treatment effects across treatment preferences
may limit the study’s externally validity. For example, a medical
treatment that was found to be ineffective on average in a RCT
may in fact be highly beneficial for the patients who would
choose to take it if they were able to. In a standard RCT, however,
researchers cannot make such nuanced inferences because all
subjects are forced to take treatments randomly chosen by the
researchers.
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In this article, we propose a new experimental design for
patient preference trials (PPTs), in which subjects’ preferences
over treatments are systematically incorporated in the study
design. The proposed design consists of two stages of random-
ization and synthesizes many of the variants of PPTs previously
used in social (Gaines and Kuklinski 2011; Arceneaux, Johnson,
and Murphy 2012) and medical (King et al. 2005; Howard
and Thornicroft 2006) applications. First, all participants state
their preferred treatments prior to entering the study. Then, we
randomize them into either a standard RCT or a self-selection
condition. In the latter condition, they choose the treatment as
they would in the real world. Finally, we measure the outcome
variables of interest. The proposed design is novel in that it
allows the researcher to incorporate in the analysis the dis-
crepancy between subjects’ stated preferences and their actual
choice of treatments. This modification is important because
respondents to a survey question often fail to report their under-
lying preferences to the interviewer, whether consciously or
subconsciously.

Using the potential outcomes framework of causal inference
(Neyman 1923; Rubin 1974), we define a causal quantity which
we call the average choice-specific treatment effect (ACTE), rep-
resenting the conditional average treatment effect for the sub-
population of subjects who would choose a particular treatment
option. We show that the point identification of this quantity for
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a multi-valued treatment requires the strong assumption that
the discrepancy between stated preference and actual choice
is ignorable. That is, the naïve estimate of the ACTE using
stated preference will be biased if the measurement errors are
systematically correlated with unobserved characteristics that
affect the potential outcomes.

To make valid inference about the ACTE under the proposed
design, we derive nonparametric sharp bounds on this causal
quantity without assuming the ignorability of the measurement
error in stated treatment preferences. We also propose a sensi-
tivity analysis where we quantify the assumed informativeness
of the stated preferences about actual choices via a sensitivity
parameter and analyze how the ACTE responds to the change
in this parameter. Finally, we develop a simulation-based proce-
dure to make statistical inference for the bounds and sensitivity
results in small samples. We provide open-source software,ppt,
for implementing the proposed methodology.

We illustrate the proposed design and methodology with
an original survey experiment, where we investigate the effect
of partisan political news media on the subjects’ perception of
the media and their subsequent political behavior. Our primary
interest is in how the effects of our treatments vary depending on
whether subjects would actually consume such partisan media
if they could choose to do so.

Despite the prevalence of PPTs across scientific disciplines,
very few methodological investigations have been conducted
on the topic from the perspective of causal inference. A notable
exception is Long, Little, and Lin (2008), who employed a
framework similar to ours to define causal quantities. For the
identification and estimation of those quantities, however, they
assume a parametric model between the unobserved choice
and observed covariates for participants in the self-selection
condition and use an EM algorithm to estimate the causal
quantities as functions of model parameters. In contrast, our
model-free approach avoids distributional or functional-form
assumptions for better credibility of the resulting inference.

The rest of the article proceeds as follows. Section 2 describes
the background motivation of the empirical example. Section 3
formally describes the proposed design and defines causal quan-
tities of interest and assumptions. Sections 4–6 discuss the pro-
posed methodology. Section 7 applies the method to the empiri-
cal example. Section 8 investigates finite-sample performance of
the proposed inferential approach via Monte Carlo simulations.
Section 9 concludes.

2. A Motivating Example

In recent years, many scholars (e.g., Prior 2007) have explored
the political consequences of increased media choice in the 21st
century. The explosion of media outlets has vastly increased the
choices available to consumers and allowed for the development
of ideological “niche” news programming (Hamilton 2005). A
great deal of research has sought to determine the effects of this
unprecedented media fragmentation (e.g., Stroud 2011; Kim
2009; Iyengar and Hahn 2009; Levendusky 2013).

Among several significant strands of this research program,
a predominant body of scholarship has sought to delineate the
effects of consuming ideologically polarized media on attitudes
toward the broader mass media. According to Gallup (2014),

between 1976 and 2014, the percentage of Americans expressing
“a great deal” or “a fair amount” of trust in the media fell from
72% to 44%. People who distrust the media may conclude it
cannot report in an unbiased manner. As a result, the public may
dismiss media content as unreliable and increasingly become
suspicious of and antagonistic toward the news media more
generally (Arceneaux, Johnson, and Murphy 2012; Ladd 2012).

To explore this phenomenon, we conducted an experiment
in June 2014 on a sample of 3023 American adults, recruited by
Survey Sampling International (SSI). Our goal was to estimate
the effect of exposing subjects to pro- and counter-attitudinal
political news programming (as opposed to nonpolitical enter-
tainment shows) on their sentiment toward specific news pro-
grams and the media in general. We also explored whether such
programming produces behavioral responses, such as changes
in propensity to discuss the content of the media with friends.
Specifically, we selected a short clip from each of the following
television programs: (1) The Rachel Maddow Show (MSNBC),
(2) Jamie’s Kitchen with Jamie Oliver (Food Network), (3) Dirty
Jobs with Mike Rowe (Discovery Channel), and (4) The O’Reilly
Factor with Bill O’Reilly (Fox News). We carefully selected clips
from the two political shows—Rachel Maddow and The O’Reilly
Factor—to match as closely to each other in topic and content as
possible. We selected clips that focused on energy policy (specif-
ically, the Obama administration’s policies regarding domestic
energy production and their effects on gas prices). Finally, we
merged the two entertainment shows into a single treatment
condition (“entertainment”) in our analysis.

One of our primary concerns in the design of our study
was that the existing experimental studies of partisan media
effects had limited external validity because they paid inade-
quate attention to the preferences of subjects over treatment
options. Namely, the average treatment effect obtained in a stan-
dard RCT could mask fundamental heterogeneity across differ-
ent types of individuals and misrepresent the overall impact of
media polarization in the “real” political world. For instance,
it could be the case that partisan news is highly persuasive for
some people—say, those least likely to consume it in the real
world—while having little or no persuasive effect among people
who are most likely to consume it.

A natural approach to incorporating preferences is to
adopt one of the commonly used PPT designs. For example,
Arceneaux, Johnson, and Murphy (2012) conducted a similar
media choice experiment in which respondents were asked their
news preferences before being randomly assigned to a particular
treatment condition. A PPT based on the measurement of
stated preferences like this, however, appears inadequate in
our context. This is because research has shown that people
often have difficulty assessing what they would actually do or
prefer (Clausen 1968) or have done in the past (Prior 2009)
when offered a hypothetical choice or asked about past behavior.
Theories regarding the source of this gap between self-reported
preferences and actual behavior, like media consumption, are
manifold. These theories range from a bias toward offering
socially desirable responses on topics like voting (Rogers and
Aida 2013) and sensitive topics (Brown and Sinclair 1999; Hser,
Maglione, and Boyle 1999; Payne 2010); to selective retention of
pro-attitudinal information (Campbell et al. 1960) or motivated
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reasoning (Levendusky 2013); to an inability to accurately
remember prior behavior (Tourangeau 1999).

Given these considerations about the inadequacy of existing
experimental designs, we implemented a new PPT design which
we will describe in Section 3. In Section 7, we present results
from our analysis of this experiment with our proposed method-
ology.

3. Design and Assumptions

In this section, we introduce the notation required for our
methodology. We define our causal quantities of interest and
discuss their substantive interpretations. We then introduce
several assumptions for identification analysis.

3.1. Notation and the Proposed Design

Suppose that we have a random sample of N experimental
subjects from the population of interest. We consider a study
where the goal is to estimate the effect of a J-valued treatment
on an outcome of interest. Let Ai ∈ A ≡ {0, 1, . . . , J −1} denote
the treatment that subject i actually receives in the study. For the
rest of the paper, we call this the “actual treatment,” or simply
the “treatment” when the meaning is obvious from the context.
Without loss of generality, we impose the standard total ordering
on A.

Our proposed design for PPTs proceeds as follows. First, all
N subjects in the study sample are asked to state their preferred
treatment, Si ∈ A. Second, after an optional “washout” period,
or a set of additional questions as we discuss in Section 7.1, the
subjects are randomized into one of the two conditions: either
they will be forced to take the randomly assigned treatment,
or they will be allowed to freely choose the treatment of their
own accord. We refer to this actual choice as Ci ∈ A. Formally,
we use the “design indicator” Di ∈ {0, 1} to denote whether
subject i is in the forced-exposure condition (Di = 1) or the
free-choice condition (Di = 0). Third, the subjects then receive
treatment (Ai) according to the protocol determined by their
design indicator. That is, Ai is randomized if and only if Di = 1;
in this case, Ci is unobserved. For the subjects with Di = 0, their
treatments equal the treatments they have chosen. Therefore, we
have Ai = Ci if Di = 0. Finally, the outcome of interest, Yi ∈ Y ,
is measured for every subject.

Under the proposed design, the potential outcome for subject
i can be defined as Yi(a) ∈ Y . This represents the value of the
outcome of interest that would be realized if i received the treat-
ment a ∈ A. By this notation, we are implicitly making the stable
unit treatment value assumption (SUTVA; Rubin 1990), which
posits that subjects cannot be affected by the treatments received
by any other subjects (no interference) and that subjects exhibit
the same value of the outcome no matter how the treatment
Ai = a was received (stability or consistency). In particular, the
notation assumes that there is no design effect, that is, the poten-
tial outcomes remain stable across the two design conditions.
Long, Little, and Lin (2008) called this assumption the exclusion
restriction. The no-design-effect assumption would be violated
if, for example, a nominally identical treatment had different

effects on the outcome for the same unit depending on whether
the treatment was randomly assigned in the forced-exposure
condition or voluntarily chosen in the free-choice condition.
Under the SUTVA, we can express the observed outcome as
Yi = ∑

a∈A Yi(a)1{Ai = a} = Yi(Ai) for any i. The cdf of
Yi(a) is denoted by FY(a)(y) = Pr(Yi(a) ≤ y).

The diagram in Figure 1 graphically summarizes the pro-
posed design. Several important features of this design are worth
mentioning. First, the proposed design combines the standard
RCT (Di = 1, upper arm) with a pure self-selection study (Di =
0, lower arm) via randomization. As discussed in Section 4, this
allows us to infer more about the unobserved choice behavior of
the subjects who are assigned to the forced-exposure condition.
Second, our design clearly distinguishes the stated preference
of the subjects (Si) from their actual choice (or “revealed pref-
erences,” as they are often called in the social sciences, Ci).
As pointed out in Section 2, social and medical scientists are
often concerned that stated preferences may be unreliable due
to various sources of systematic measurement error. Thus, a
“naïve” analysis that takes the stated preferences at their face
value and ignores the possible measurement error may lead to an
invalid estimate. Finally, note that we allow the treatment vari-
able to be multi-valued, instead of binary. In fact, as previously
shown by Long, Little, and Lin (2008) and Gaines and Kuklinski
(2011) and revisited in Section 4, assuming a binary treatment
greatly simplifies the problem, leading to point identification of
the ACTEs (defined shortly). However, as in the media choice
example, social and medical scientists are often interested in
testing the effects of more than two treatments in a single
study.

There exist many previous studies in both social and medical
sciences that use PPT designs related to ours (King et al. 2005;
Kowalski and Mrdjenovich 2013). For example, a commonly
used design in clinical trials (Brewin and Bradley 1989) begins
by asking subjects whether they have a preference between
treatment options and then randomizing only those subjects
who expressed no preference. A close variant of this design
(Schmoor, Olschewski, and Schumacher 1996) asks participants
whether they agree to be randomized into treatment conditions.
These designs may be preferable in situations where randomiz-
ing subjects against their preferences is practically or ethically
infeasible. However, these designs are critically limited in terms
of external validity because the treatment effects are only iden-
tified for subjects who have no (or weak) treatment preferences.

The key advantage of our proposed design is the combi-
nation of stated preference measurement for all subjects and
randomization into the forced-exposure and free-choice con-
ditions, which has never been implemented as far as we are
aware. For example, a popular approach that involves mea-
surement of stated preferences at the beginning of study forces
all respondents to randomly assigned treatments (Torgerson,
Klaber-Moffett, and Russell 1996), whereas studies that contain
randomization into forced-exposure and free-choice arms typ-
ically omit stated preference measurement (Gaines and Kuk-
linski 2011). The importance of measuring stated preferences
before randomization is worth emphasizing, for (as formally
discussed in Section 4) the variable enables more informative
inference across the forced-exposure and free-choice arms. For
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Figure 1. Diagram of the proposed PPT design. In the proposed design, subjects are first asked to state preferences about the treatment options (Si) and (after an optional
“washout” period) randomized into design conditions (Di). In the “forced exposure” arm (top, Di = 1), subjects are randomly assigned to treatments irrespective of their
stated preferences (Ai). In the “free choice” arm (bottom, Di = 0), the subjects are asked to choose the treatment they want to take (Ci) and actually exposed to that
treatment (Ai = Ci). Finally, the outcome measure is taken on all subjects (Yi). In the diagram, the blue boxes indicate random assignment and the dashed box indicates
an optional component.

example, Arceneaux, Johnson, and Murphy (2012) report results
from a series of RCTs, one of which included measurement of
stated preferences and another which involved randomization
into a free-choice condition. Unfortunately, these two studies
are conducted separately on populations with possibly different
characteristics, rendering inference from combined data diffi-
cult.

3.2. Quantities of Interest

A common causal quantity of interest in the social and medi-
cal sciences is the (population) average treatment effect (ATE),
which is defined as follows.

δ(a, a′) ≡ E[Yi(a) − Yi(a′)],

for any a and a′ ∈ A. This quantity represents the (additive)
causal effect of treating a unit with treatment a as opposed to
treatment a′, averaged unconditionally over the sampling distri-
bution. It is widely known that the ATE can be nonparametri-
cally identified in a standard RCT, where both treatments a and
a′ are randomly assigned with nonzero probabilities, and can be
estimated with very simple estimators such as the difference-in-
means.

However, the ATE is often not the only causal parameter
that is of substantive interest in a given applied setting. For
example, in the media choice experiment introduced in Sec-
tion 2, our interest was not only in the average effect of exposing
every American adult to one program versus another, but also
in investigating heterogeneity in media effects based on the
respondents’ likely media consumption in the real world. Like-
wise, in a medical application, researchers may want to study
whether a new treatment has beneficial effects on the patients
who would actually choose to use the treatment, or whether it
may have a potential harmful impact on patients if it is applied
in spite of a diverging preference.

In the rest of this article, we focus on an alternative causal
quantity which addresses these more nuanced questions,

τ(a, a′|c) ≡ E[Yi(a) − Yi(a′)|Ci = c], (1)

for any a, a′, and c ∈ A. We call this quantity the ACTE. The
ACTE represents the average effect of treating a unit with treat-
ment a instead of a′ among the units who would choose treat-
ment c if they were allowed to. For example, in the media choice
experiment, we may be interested in the effect of watching a pro-
attitudinal news program (a) instead of an entertainment show
(a′) among those who would actually be watching entertainment
when they were freely choosing the programs to watch (c = a′).
Similarly, a psychiatrist may want to estimate the potentially
adverse effect of imposing a new therapy on patients who would
prefer to keep to the old treatment. Thus, the ACTE is useful for
the investigation of substantively meaningful heterogeneity in
treatment effects in a “natural” condition, where units would be
choosing treatments without an intervention from researchers.
Note that, as expected, the overall ATE can be expressed as the
weighted average of the ACTEs, where the weights are given by
the proportions of units who would choose each of the treatment
options (i.e., δ(a, a′) = ∑

c τ(a, a′|c) Pr(Ci = c)).
The ACTE has a close connection with the more commonly

used ATE on the treated (ATT), defined as follows.

γ (a, a′) ≡ E[Yi(a) − Yi(a′)|Ai = a],
for a and a′ ∈ A. The ATT represents the average effect of
treatment a versus a′ among those units who are actually treated
with a. Conventionally in the literature, how those units come
to be actually treated with a is left implicit in the definition of
this quantity. For example, in a standard RCT where treatments
are randomly assigned and imposed, the ATT is equivalent to
the ATE because Ai is statistically independent of the potential
outcomes (i.e., γ (a, a′) = δ(a, a′) for any a, a′ ∈ A). On
the other hand, in the so-called encouragement design where
an encouragement (or “instrument”) for taking a particular
treatment option is randomized (e.g., Hirano et al. 2000), the
actual treatment status Ai reflects the subject’s voluntary action
of choosing to take the treatment and the ATT now has a
substantive meaning similar to the ACTE. This implies that
the substantive interpretation of the ATT as a causal quantity
crucially depends on the study design. In this article, we opt to
introduce the new causal quantity ACTE because its interpreta-
tion is clearer and less affected by auxiliary design assumptions
than the ATT.
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3.3. Assumptions

Here, we introduce a set of statistical assumptions and discuss
their relationships with the design we propose. Note that the
proposed design involves two random assignments. First, the
randomization of subjects into the forced-exposure and free-
choice conditions implies the following assumption.

Assumption 1 (Randomization of designs).

{Yi(a), Ci, Si} ⊥⊥ Di for all a ∈ A.

Long, Little, and Lin (2008) referred to this assumption as
“no selection bias from randomization.” Second, in the forced-
exposure condition, the treatments are randomly assigned
and imposed on each subject. This implies that the following
assumption is also guaranteed to be true.

Assumption 2 (Randomization of the forced treatment).

{Yi(a), Ci, Si} ⊥⊥ Ai | Di = 1 for all a ∈ A.

In addition to these design-guaranteed assumptions, existing
studies using PPTs often make the following untestable assump-
tion (e.g., Arceneaux, Johnson, and Murphy 2012).

Assumption 3 (Mean ignorability of measurement error).

E[Yi(a)|Ci = c] = E[Yi(a)|Si = c] for any a, c ∈ A.

This assumption states that the potential outcomes of the
units who would choose a particular treatment option are on
average equal to the potential outcomes of the (potentially
different) set of units who state that they would choose the
same treatment. In other words, Assumption 3 holds if the
discrepancy between the stated and revealed preferences (which
one may call the measurement error if the stated preference is
thought of as a measure of underlying preference) is ignorable.
The assumption may be violated if the discrepancy between the
stated preference and actual choice is systematically correlated
with any background characteristic of the units that are
associated with the potential outcomes.

Assumption 3 is not directly testable because the conditional
expectation on the left-hand side is unobservable for a �= c.
However, Assumption 3 has two empirical implications which
can be tested with observed information. First, Assumptions 1–
3 jointly imply the following relationship.

E[Yi|Ai = a, Di = 0] = E[Yi|Ai = Si = a, Di = 1], (2)

for any a ∈ A. Second, for outcomes that are bounded from
below (y) and above (y), it can be shown that the following
inequalities must hold under Assumptions 1–3.

y ≤
E[Yi|Ai = a, Di = 0]
−E[Yi|Ai = Si = a, Di = 0] Pr(Ai = a|Si = a, Di = 0)

1 − Pr(Ai = a|Si = a, Di = 0)

≤ y (3)

for any a ∈ A. Proofs are provided in Web Appendix A1.
Assumption 3 may be attractive because, as we show in

Section 4, it allows the point identification of the ACTE only

with the forced-exposure condition. By making Assumption 3,
the researcher can save the cost of employing an additional
experimental arm. However, the assumption is a strong one in
many applied contexts, as we discussed in Sections 2 and 3.1.
In such applications, we recommend against dropping the free-
choice condition entirely, and also recommend that the above
observable implications of the assumption be tested with the
collected data before the assumption is made in the analysis.
Tests can be conducted in the usual manner based on the
sample analogues of the expressions and their asymptotic sam-
pling properties, obtained via standard techniques like the delta
method.

4. Nonparametric Identification Analysis

In this section, we present the results of our nonparametric iden-
tification analysis for the ACTE. Our goal is to find nonparamet-
ric bounds on τ(a, a′|c) as functions of the joint distribution of
{Yi, Di, Ai, Si}, which are always observed for all i ∈ {1, . . . , N}
under the proposed design. First, we consider the identifiability
of the ACTE when we only make the assumptions that are guar-
anteed to hold by the study design (i.e., Assumptions 1 and 2) as
well as the SUTVA and no design effect. In Web Appendix A2,
we show that the ACTE can be expressed as follows under those
assumptions.

τ(a, a′|c)
= 1

Pr(Ai = c|Di = 0)

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E[Yi|Ai = a, Di = 1] − E[Yi|Ai = a′, Di = 1]
−E[Yi|Ai = a, Di = 0] Pr(Ai = a|Di = 0)

+E[Yi|Ai = a′, Di = 0] Pr(Ai = a′|Di = 0)

−∑
c′ �∈{a,c} E[Yi(a)|Ci = c′] Pr(Ai = c′|Di = 0)

+∑
c′ �∈{a′,c} E[Yi(a′)|Ci = c′] Pr(Ai = c′|Di = 0)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

(4)

for any a, a′, and c ∈ A. Equation (4) immediately gives us three
important results. First, Equation (4) contains as many as 2(J −
2) terms (when a �= a′ �= c) that cannot be identified from
observed data under Assumptions 1 and 2. When a �= a′ = c or
a = c �= a′, some of these can replaced with observed quantities,
but J − 2 unidentified terms remain. Thus, it can be concluded
that the ACTE is unidentified by the proposed PPT design itself.

Second, when the treatment is binary as in many social and
medical RCTs (i.e., J = 2), the unidentified terms drop out
of Equation (4). This implies that the ACTE is point-identified
under Assumptions 1 and 2 alone if J = 2, and is written as

τ(a, a′|c) =
{

E[Yi|Di=0]−E[Yi|Ai=a′,Di=1]
Pr(Ai=a|Di=0)

if c = a,
E[Yi|Ai=a,Di=1]−E[Yi|Di=0]

Pr(Ai=a′|Di=0)
if c = a′,

for a, a′, and c ∈ {0, 1}. This exactly matches Gaines and
Kuklinski’s (2011, p. 729) result, where they consider a PPT
design that is identical to ours except that it does not contain
the measurement of stated preferences Si and only the J = 2 case
is considered. The same result is also obtained by Long, Little,
and Lin (2008) using a framework more similar to ours. Thus,
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we verify their earlier result under the current framework and
also show that our proposed framework encompasses theirs as
a special case.

Third, if we make Assumption 3 in addition to Assump-
tions 1 and 2, the unidentified terms in Equation (4) become
identified as E[Yi(a′′)|Ci = c′] = E[Yi|Ai = a′′, Si = c′, Di =
1] for a′′ ∈ {a, a′}. This implies that the ACTE can be point
identified for any J under Assumptions 1–3 and is given by the
following expression.

τ(a, a′|c) = E[Yi|Si = c, Ai = a, Di = 1]
−E[Yi|Si = c, Ai = a′, Di = 1], (5)

for a, a′, and c ∈ A. Equation (5) makes it clear that the forced-
exposure group alone is sufficient for the identification of the
ACTE when we make Assumptions 2 and 3. Indeed, Arceneaux,
Johnson, and Murphy (2012, pp. 182–183) use Equation (5) to
estimate the ACTE in their experiment, which consisted of the
forced-exposure arm of our proposed design alone. As we dis-
cussed in Section 3, while this design choice may be reasonable
in some applied contexts, it must be made with caution because
Assumption 3 is strong and omitting the free-choice condition
precludes the testing of its observable implications. From here
on, we call Equation (5) the “naïve estimator” of the ACTE.

What if we want to avoid Assumption 3 or analyze nonbi-
nary treatments? In this case, the forced-exposure arm alone
is completely uninformative about the ACTE. We present two
partial identification results using both forced-exposure and
free-choice arms, which provide sharp bounds (i.e., the tightest
possible given all the observed information; Manski 1995) on
τ(a, a′|c) under various scenarios.

4.1. General Results

Our first set of results, summarized in Proposition 1, is the more
general of the two and valid for any real-valued outcome (Y ⊆
R) under the proposed design.

Proposition 1 (Nonparametric sharp bounds on the ACTE).
Under Assumptions 1 and 2, τ(a, a′|c) can be partially identified
at least up to the following nonparametric bounds

∑
s∈A

⎛
⎜⎜⎝ lim

y∗→−∞

⎡
⎢⎢⎣
∫ ∞

y∗
max

⎧⎪⎪⎨
⎪⎪⎩0, 1 −

1 − F(y|s, a′, 1)

+ {
1 − F(y|s, a′, 0)

}
P(a′|s, 0)

Pr(Ai = c|Si = s, Di = 0)

⎫⎪⎪⎬
⎪⎪⎭

− min
{

1,
F(y|s, a, 1) − F(y|s, a, 0)P(a|s, 0)

Pr(Ai = c|Si = s, Di = 0)

}
dy

⎤
⎥⎥⎦
⎞
⎟⎟⎠

× Pr(Si = s|Ai = c, Di = 0)

≤ τ(a, a′|c) ≤

∑
s∈A

⎛
⎜⎜⎝ lim

y∗→−∞

⎡
⎢⎢⎣
∫ ∞

y∗
min

{
1,

F(y|s, a′, 1) − F(y|s, a′, 0)P(a′|s, 0)

Pr(Ai = c|Si = s, Di = 0)

}

− max

⎧⎪⎪⎨
⎪⎪⎩0, 1 −

1 − F(y|s, a, 1)

+ {
1 − F(y|s, a, 0)

}
P(a|s, 0)

Pr(Ai = c|Si = s, Di = 0)

⎫⎪⎪⎬
⎪⎪⎭ dy

⎤
⎥⎥⎦
⎞
⎟⎟⎠

× Pr(Si = s|Ai = c, Di = 0), (6)

where F(y|s, a, d) = Pr(Yi ≤ y|Si = s, Ai = a, Di = d) and
P(a|s, 0) = Pr(Ai = a | Si = s, Di = 0) for any a, a′, and c ∈ A.
If a′ = c, these bounds are sharp and simplify to the following
expression

∑
s∈A

⎛
⎜⎜⎝ lim

y∗→−∞

⎡
⎢⎢⎣
∫ ∞

y∗
1

− min

⎧⎪⎪⎨
⎪⎪⎩1,

F(y|s, a, 1)

−F(y|s, a, 0)P(a|s, 0)

Pr(Ai = c|Si = s, Di = 0)

⎫⎪⎪⎬
⎪⎪⎭ dy + y∗

⎤
⎥⎥⎦
⎞
⎟⎟⎠

× Pr(Si = s|Ai = c, Di = 0)

−E[Yi|Ai = c, Di = 0]
≤ τ(a, c|c) ≤ (7)

∑
s∈A

⎛
⎜⎜⎝ lim

y∗→−∞

⎡
⎢⎢⎣
∫ ∞

y∗
1

− max

⎧⎪⎪⎨
⎪⎪⎩0, 1 −

1 − F(y|s, a, 1)

+ {
1 − F(y|s, a, 0)

}
P(a|s, 0)

Pr(Ai = c|Si = s, Di = 0)

⎫⎪⎪⎬
⎪⎪⎭ dy

+y∗

⎤
⎥⎥⎦
⎞
⎟⎟⎠ · Pr(Si = s|Ai = c, Di = 0)

−E[Yi|Ai = c, Di = 0],
for any a and c ∈ A.

Intuitively, the observed forced-choice distribution of Yi(a) is
a mixture of the choice-specific component distributions, where
size of each component is known but the choice-specific distri-
bution is unobserved for all Ci �= Ai. We bound these unob-
served component distributions by first applying the Fréchet–
Hoeffding bounds on the joint distribution of Yi(a) and Ci for
each observed stratum defined by Si, conditional on Ci �= a.
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Then, sharp bounds onE[Yi(a) | Ci = c] are derived. A detailed
proof can be found in Web Appendix A3.

We offer several remarks on Proposition 1. First, the bounds
on τ(a, a′|c) are tighter when more units choose the treatment
of interest (c) in the free-choice condition. This is because, intu-
itively, the worst-case assumptions for the unobserved potential
outcomes apply to a smaller portion of the population. Second,
we can prove the bounds to be sharp only when a′ = c, that is,
when one of the average potential outcomes in τ(a, a′|c) can be
point identified from the observed outcome for the free-choice
group. This limitation motivates our second set of identification
results.

4.2. Sharp Bounds for Binary Outcomes

Next, we restrict analysis to outcome variables that are binary
(Y ∈ {0, 1}) and derive another set of nonparametric bounds
on the ACTE. In this case, we can obtain the sharp bounds
on τ(a, a′|c) for any a, a′ and c ∈ A (in particular, even
when a �= a′ �= c) by incorporating the full joint distribu-
tion of the observed variables in the derivation of the bounds.
This is achieved via the linear programming approach based
on principal stratification (Balke 1995; Balke and Pearl 1997;
Frangakis and Rubin 2002), which has recently been used for
nonparametric identification analysis of various causal quanti-
ties (e.g., Yamamoto 2012; Imai, Tingley, and Yamamoto 2013).
First, we define 2J J2 principal strata, a partition of the popu-
lation of units based on the values of their potential outcomes
(Yi(0), . . . , Yi(J − 1)) as well as the values of their stated and
revealed preferences (Si and Ci). Then we consider the popu-
lation proportion of each principal stratum, which we denote
by φy0,...,yJ−1,s,c ≡ Pr(Yi(0) = y0, . . . , Yi(J − 1) = yJ−1, Si =
s, Ci = c), where y0, . . . , yJ−1 ∈ {0, 1} and s, c ∈ A. For
the rest of this section, we focus on the case of a tri-valued
treatment (J = 3, as in the media choice example) for notational
tractability, although the proposed method can be applied more
generally. There are a total of 72 unique principal strata when
J = 3, corresponding to unique combinations in the indices of
φy0,y1,y2,s,c. The proposed method can also be applied to non-
binary categorical outcomes with a straightforward extension,
which we do not pursue here to keep the exposition simple.

The following proposition shows that the sharp bounds on
the ACTE can be obtained by solving a linear programming
problem when the outcome is binary.

Proposition 2 (Nonparametric sharp bounds on the ACTE for
binary outcomes). Under Assumptions 1 and 2 and when J = 3,
the nonparametric sharp bounds on τ(a, a′ | c) for a binary
outcome can be obtained as a solution to the following linear
programming problem.

min
�

and max
�

1
Pr(Ai = c|Di = 0)

×
⎧⎨
⎩

∑
a′′∈{0,1}

∑
s∈A

(
φ1,0,ya′′ ,s,c − φ0,1,ya′′ ,s,c

)⎫⎬⎭ ,

s.t. φy0,y1,y2,s,c′ ≥ 0 ∀ y0, y1, y2, s, c′,
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}∑
s∈A

∑
c′∈A φy0,y1,y2,s,c′ = 1,

∑
y0∈{0,1}

∑
y1∈{0,1}

∑
y2∈{0,1} φy0,y1,y2,s,c′ · 1{yc′ = 1} = Pr(Si =

s, Ai = c′, Yi = 1 | Di = 0) ∀ s, c′,∑
y0∈{0,1}

∑
y1∈{0,1}

∑
y2∈{0,1} φy0,y1,y2,s,c′ = Pr(Si = s, Ai = c′ |

Di = 0) ∀ s, c′, and∑
y0∈{0,1}

∑
y1∈{0,1}

∑
y2∈{0,1}

∑
c′∈A φy0,y1,y2,s,c′ · 1{ya′′ = 1} =

Pr(Si = s, Yi = 1 | Ai = a′′, Di = 1) ∀ s, a′′, where � ≡{
φy0,y1,y2,s,c : y0 ∈ {0, 1}, y1 ∈ {0, 1}, y2 ∈ {0, 1}, s ∈ A, c ∈ A

}
.

A proof is provided in Web Appendix A4. The maximization
and minimization problems in Proposition 2 are standard linear
programming problems which can be easily solved numerically
with given data using statistical software, such as the lpSolve
package in R. We note that, for the τ(a, c|c) case with binary
outcomes, Equation (7) simplifies to

∑
s∈A

(
1 − min

{
1,

F(0|s, a, 1) − F(0|s, a, 0)P(a|s, 0)

Pr(Ai = c|Si = s, Di = 0)

})

× Pr(Si = s|Ai = c, Di = 0)

− Pr(Yi = 1|Ai = c, Di = 0)

≤ τ(a, c|c) ≤

∑
s∈A

⎛
⎜⎜⎝1 − max

⎧⎪⎪⎨
⎪⎪⎩0, 1 −

1 − F(0|s, a, 1)

+{1 − F(0|s, a, 0)} P(a|s, 0)

Pr(Ai = c|Si = s, Di = 0)

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

× Pr(Si = s|Ai = c, Di = 0)

− Pr(Yi = 1|Ai = c, Di = 0),

which we find to numerically coincide with the linear program-
ming bounds based on Proposition 2, as they should.

5. Sensitivity Analysis

The nonparametric bounds in Propositions 1 and 2 represent
“worst-case” scenarios, in that they allow for the maximal devi-
ation in the average potential outcomes between those subjects
who merely state they would take a treatment and those who
actually choose to take the treatment. In contrast, the naïve esti-
mator given in Equation (5) relies on Assumption 3 and assumes
(often demonstrably falsely) that this deviation is zero. The
truth, however, lies somewhere between these two extremes.

In this section, we propose a sensitivity analysis to investigate
this middle ground. Sensitivity analysis is a commonly used
inferential strategy where the degree of violation of a key iden-
tification assumption is quantified via a sensitivity parameter
(Rosenbaum 2002) and the consequence of this violation is then
expressed and analyzed as a function of this parameter. Here,
we consider a sensitivity parameter ρac which represents the
maximum absolute difference we allow to exist between the
average of a potential outcome (Yi(a)) among those who state
a particular treatment preference (Si = c) and the average of the
same potential outcome among those who actually choose that
treatment (Ci = c). Formally, ρac is defined by the following
inequality,

|E[Yi(a)|Si = c] − E[Yi(a)|Ci = c]| ≤ ρac,
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which implies the following additional constraint for identifica-
tion analysis under Assumptions 1 and 2,

E[Yi|Si = c, Ai = a, Di = 1] − ρac

≤ E[Yi(a)|Ci = c]
≤ E[Yi|Si = c, Ai = a, Di = 1] + ρac, (8)

for a given pair of a and c ∈ A such that a �= c.
The proposed sensitivity analysis proceeds by combining the

sensitivity constraint in Equation (8) with the no-assumption
bounds on average choice-specific potential outcomes,∑

s∈A

{
π−(a|s, c) Pr(Si = s|Ai = c, Di = 0)

}
≤ E[Yi(a)|Ci = c]
≤
∑
s∈A

{
π+(a|s, c) Pr(Si = s|Ai = c, Di = 0)

}
,

where π−(a|s, c) and π+(a|s, c) are the sharp bounds on
E[Yi(a) | Si = s, Ci = c] derived in Web Appendix A3. We
therefore find bounds on τ(a, a′|c) for a given pair of (ρac, ρa′c)
by the interval difference

τ(a, a′|c) ∈
([

E[Yi|Si = c, Ai = a, Di = 1]

−ρac, E[Yi|Si = c, Ai = a, Di = 1] + ρac

]
⋂ [∑

s∈A

{
π−(a|s, c) Pr(Si = s|Ai = c, Di = 0)

}
,

∑
s∈A

{
π+(a|s, c) Pr(Si = s|Ai = c, Di = 0)

} ])

−
([

E[Yi|Si = c, Ai = a′, Di = 1] − ρa′c,

E[Yi|Si = c, Ai = a′, Di = 1] + ρac

]
⋂ [∑

s∈A

{
π−(a′|s, c) Pr(Si = s|Ai = c, Di = 0)

}
,

∑
s∈A

{
π+(a′|s, c) Pr(Si = s|Ai = c, Di = 0)

} ])
.

(9)

Again, when a′ = c, this expression can be simplified by
substituting the second interval with the observed quantity
E[Yi|Ai = c, Di = 0], and the resulting bounds are now sharp
for a given value of ρac. When a′ �= c, we recommend setting
ρac = ρa′c = ρ and conducting the analysis with respect to
a single sensitivity parameter for both counterfactual outcomes
for the sake of interpretability.

Before proceeding to binary outcomes, we note that a similar
sensitivity approach can be applied to a simpler design with
only the forced-exposure arm. However, this approach is limited
in two ways. First, the sensitivity bounds will be much wider
because they will consist of Equation (9) without the latter
portion of each intersection. Second, because the free-choice

arm is the only source of information about the feasible range of
ρac, even infinite values cannot be excluded in the simpler design
when the outcome variable is unbounded. At this extreme, the
sensitivity analysis becomes completely uninformative, as noted
in Section 4.

For binary outcomes, the sharp sensitivity bounds can
be numerically obtained for any τ(a, a′|c) and given val-
ues of ρac and ρa′c by incorporating Equation (8) into the
linear programming problem in Proposition 2 as another
set of linear constraints. For the special case of J = 3,
these constraints can be written in terms of φy0,y1,y2,s,c as∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A φy0,y1,y2,s,c1{ya∗ = 1} ≥
{Pr(Yi = 1 | Si = c, Ai = a∗, Di = 1)−ρa∗c} Pr(Ai = c|Di = 0)

and
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A φy0,y1,y2,s,c1{ya∗ = 1} ≤
{Pr(Yi = 1 | Si = c, Ai = a∗, Di = 1)+ρa∗c} Pr(Ai = c|Di = 0)

for given c and a∗ ∈ {a, a′}.

6. Statistical Inference

In this section, we discuss our methods for performing statistical
inference for the large-sample bounds in Sections 4 and 5.
Several approaches have been proposed for inference about
partially identified parameters in the literature, including the
nonparametric bootstrap (e.g., Horowitz and Manski 2000).
Here, we take a Bayesian approach where we obtain simulated
draws from the marginal posterior distribution for the bounds
on τ(a, a′|c) by Monte Carlo integration of the approximated
joint posterior.

For inference about the general bounds in Proposition 1, we
use the following procedure to obtain one simulated draw of the
bounds, τ−(a, a′|c)∗ and τ+(a, a′|c)∗, from their joint posterior.

Algorithm 1 (Posterior simulation for the bounds in Proposi-
tion 1).

1. Draw p ≡ [ps] ∼ Dirichlet(n), where n ≡ [ns] =[∑N
i=1 1{Si = 0}, . . . ,

∑N
i=1 1{Si = J − 1}

]�
.

2. For each s ∈ A:

(a) Draw qs ≡ [qsa] ∼ Dirichlet(n0
s ), where n0

s ≡ [n0
sa] =[∑N

i=1 1{Si = s, Ai = 0, Di = 0}, . . . ,
∑N

i=1 1{Si =
s, Ai = J − 1, Di = 0}

]�
.

(b) For each a and c ∈ A, draw a pair [π−(a|s, c), π+(a|s, c)]
from Normal

([
π̄−
π̄+
]

,
[

V− C
C V+

])
, where expressions for

π̄−, π̄+, V−, V+ and C are provided in Web
Appendix A5.

3. Calculate a simulated draw of [τ−(a, a′|c), τ+(a, a′|c)] as

τ−(a, a′|c)∗ =
∑
s∈A

(
π−(a|s, c) − π+(a′|s, c)

) qscps∑
s′∈A qs′cps′

,

τ+(a, a′|c)∗ =
∑
s∈A

(
π+(a|s, c) − π−(a′|s, c)

) qscps∑
s′∈A qs′cps′

.

Note that for a = c, π(a|s, c) = π−(a|s, c) = π+(a|s, c)
and Step 2 will be a draw from the univariate normal distri-
bution with mean π̄ and variance V , which are also given in
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Web Appendix A5. This procedure asymptotically approximates
the posterior for the bounds on τ(a, a′|c) without assuming a
full parametric model for the true distribution of the potential
outcomes. Exact prior specifications are therefore unnecessary
for these parameters; we use improper flat priors where explicit
prior specifications are necessary (i.e., for p and q). Details are
provided in Web Appendix A5.

For the sharp bounds for binary outcomes in Proposition 2,
we can apply a similar algorithm which simulates the joint
posterior on the proportions of the observed strata and solves
the linear programming problem using the simulated draws
from the posterior. The procedure is identical to Algorithm 1
except that Steps 2 and 3 should be replaced with the following:

2. (b) For each a ∈ A, draw Hsa ∼ Beta(
∑N

i=1 1{Yi = 1, Si =
s, Ai = a, Di = 1},

∑N
i=1 1{Yi = 0, Si = s, Ai = a, Di =

1}) and Gsa ∼ Beta(
∑N

i=1 1{Yi = 1, Si = s, Ai = a, Di =
0},
∑N

i=1 1{Yi = 0, Si = s, Ai = a, Di = 0}).
3. Calculate a simulated draw of [τ−(a, a′|c), τ+(a, a′|c)] by

solving the linear programming problem in Proposition 2,
with the probabilities of the observed strata in the constraints
replaced with the simulated draws from their posterior (q ≡
[qs], G ≡ [Gsa], and H ≡ [Hsa]).

Once we generate a large enough number of draws from the
approximated joint posterior of τ−(a, a′|c) and τ+(a, a′|c), we
construct 100(1 − α)% credible intervals for the bounds. For
each combination of a, a′, and c, we use a numerical procedure
to find the narrowest interval that entirely contains 1 − α of
the draws of the bounds (i.e., [τ̂−(a, a′|c), τ̂+(a, a′|c)] such that
τ̂−(a, a′|c) < τ−(a, a′|c)∗ and τ+(a, a′|c)∗ < τ̂+(a, a′|c) for
100(1 − α)% of the draws). We call these the highest posterior
density (HPD) intervals for the bounds, because they contain
1 − α of the posterior probability mass defined on the bounds
with the minimal width. In practice, we find that HPD intervals
are virtually indistinguishable from simply taking the α/2 and
1 − α/2 quantiles of the lower and upper bounds posteriors,
respectively. In a simulation study (Web Appendix A7), we find
that HPD intervals generally perform better than a nonparamet-
ric bootstrap approach in finite samples in terms of frequentist
coverage probability.

Finally, uncertainty estimates for the sensitivity analysis
bounds in Section 5 can also be obtained following analogous
procedures. For the general bounds, the key difference is that
the algorithms for the sensitivity bounds are augmented to
incorporate an additional set of parameters E[Yi|Si, Ai, Di = 1]
as part of the joint posterior to simulate from, which is used
in the sensitivity constraint. Details are provided in Web
Appendix A6.

7. Empirical Application

Now we apply the proposed methodology to the empirical
example we described in Section 2.

7.1. Design and Data

In implementing the media choice experiment, we closely fol-
lowed the proposed protocol as described in Section 3.1 and

summarized in Figure 1. First, to measure the stated preferences
over treatment options, early in the survey we asked, “If you were
given the choice of the following four television programs to
watch, which would you choose?” We presented each television
choice (listed in Section 2) with an accompanying screenshot of
the host of the show, while randomizing the order of the shows.

Subsequently, we included a “washout” period in which
we asked subjects various questions not directly related to
the media choice (e.g., demographics, unrelated psychological
experiments). Survey researchers have long known that the
order in which questions are asked can influence subsequent
patterns of responses. One reason is that asking a respondent a
particular question can prime certain concepts, making them
salient at the time of response (Tourangeau, Rips, and Rasinski
2000). In this case, we included these filler questions to mini-
mize the possibility that responses to the initial preference ques-
tion might contaminate their subsequent media choice in the
free-choice
condition.

The washout items included questions about their partisan-
ship that we used to categorize their media preferences as pro- or
counter-attitudinal. We considered Fox News “pro-attitudinal”
for Republicans and “counter-attitudinal” for Democrats.
MSNBC was coded in the opposite manner. After excluding
subjects who were neither Democrats nor Republicans, 31%
of the sample expressed a preference for pro-attitudinal media
(Si = 0), 12% for counter-attitudinal media (Si = 1), and the
remaining 56% for an entertainment show (Si = 2).

Next, we randomized subjects with equal probability into the
forced-exposure (Di = 1) and free-choice (Di = 0) conditions.
We randomly assigned those in the forced-choice arm to watch
pro-attitudinal media (Ai = 0), counter-attitudinal media (Ai =
1), or a randomly chosen entertainment program (Ai = 2),
each with probability 1/3. For those in the free-choice arm,
we instead asked, “Which of these programs would you like to
watch now?” with the same four options presented as before.
Based on their partisanship and response, we recorded the
actual choice Ci as 0, 1, or 2. Here, we find that stated preferences
correspond only loosely to actual choices, and that those stating
a preference for entertainment were more likely to be consistent
in their actual choices (Pr(Ci = 2|Si = 2) = 0.91, whereas
Pr(Ci = 0|Si = 0) = 0.83 and Pr(Ci = 1|Si = 1) = 0.78 in the
data). We assigned these subjects to view their choice, so that
Ai = Ci in the free-choice arm.

We consider two outcome variables. First, after showing the
program, we asked respondents to rate the clip they watched on
a number of dimensions, which we subsequently summarized
into an index of sentiment toward media. The index ranged
between 0 and 1 and the mean and SD were 0.61 and 0.17,
respectively. Second, to gauge behavioral responses, we asked
subjects how likely they would be to discuss the clip with a
friend, which we recoded into a binary indicator. Overall, 62.5%
of subjects were at least “somewhat likely” to discuss the viewed
program (= 1) while the rest answered they were “not likely” to
do so (= 0).

Table 1 summarizes the observed data from the media choice
experiment. The general pattern indicates that discrepancies
between stated and true preferences not only exist, but that these
discrepancies are also associated with different responses to
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Table 1. Summary of observed data in the media choice experiment.

Free-choice condition (Di = 0)

Stated preference (Si) 0 1 2

Actual choice (Ci = Ai) 0 1 2 0 1 2 0 1 2

Strata proportions 0.25 0.02 0.03 0.01 0.09 0.02 0.03 0.02 0.53

Outcomes (Yi)
Sentiment toward media 0.67 0.51 0.66 0.52 0.56 0.60 0.60 0.54 0.68
Likely to discuss 0.77 0.76 0.62 0.62 0.75 0.68 0.82 0.77 0.57

Forced-exposure condition (Di = 1)

Stated preference (Si) 0 1 2

Randomized treatment (Ai) 0 1 2 0 1 2 0 1 2

Strata proportions 0.10 0.11 0.11 0.04 0.05 0.05 0.20 0.18 0.16

Outcomes (Yi)
Sentiment toward media 0.67 0.38 0.64 0.59 0.54 0.63 0.57 0.47 0.64
Likely to discuss 0.74 0.48 0.42 0.73 0.76 0.66 0.66 0.56 0.56

NOTE: The third row in each table shows the observed proportion in each stated preference-treatment stratum. The bottom two rows in each table represent the sample
averages of the two outcome variables in each stratum.

Figure 2. Estimated nonparametric bounds on the ACTE of partisan news media. Vertically stacked plots correspond to the same outcome variable. Horizontally aligned
plots depict the effect of a particular change in the assigned media, that is, E[Yi(a)− Yi(a′)|Ci = c]. Pairs of lines correspond to the ACTE among those that would choose
a given media (horizontal axis labels). Large blue points and solid thick blue error bars are pooled ATEs. Small blue points are naïve estimates, with blue dashed error bars
representing 95% asymptotic confidence intervals. Solid thick red error bars are estimated bounds (posterior means) and thin error bars give 95% posterior intervals.

media. For example, among those respondents in the free-choice
group who stated a preference for pro-attitudinal media and
also chose a pro-attitudinal program, mean sentiment was 0.67.

In contrast, responses were significantly lower (by 0.07) among
free-choice subjects who stated a preference for entertainment
but actually chose pro-attitudinal media.
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7.2. Nonparametric Bounds

Given the evidence that stated preferences of subjects do not
accurately reflect their actual choices, we now seek to bound
the ACTEs using the method developed in Section 4. Figure 2
presents the resulting nonparametric bounds, along with their
95% posterior intervals obtained via the procedure proposed in
Section 6. The left panel presents results for subjects’ sentiment
toward the media watched (Proposition 1), and the right panel
presents results for whether respondents were likely to discuss
the story with a friend (binary; Proposition 2). Each vertically
arrayed plot depicts the effect of a particular change in the
assigned media, from entertainment to pro-attitudinal (top),
entertainment to counter-attitudinal (middle), and counter- to
pro-attitudinal (bottom). The leftmost blue solid circle (point
estimate) and error bar (95% asymptotic confidence interval)
in each plot is the pooled ATE. Paired lines within each plot
(thin blue and thick red) represent the estimated ACTE of that
treatment among subjects that would choose pro-attitudinal
media (left), counter-attitudinal media (middle), and an enter-
tainment show (right). Small blue points are the point estimates
under Assumptions 1–3, that is, the naïve estimates that assume
the ignorability of the discrepancy between stated preferences
and actual choices. Blue dashed error bars are 95% asymptotic
confidence intervals. Solid red error bars are nonparametric
bounds on ACTEs under Assumptions 1 and 2 alone, with thick
lines representing estimated bounds (posterior means) and thin
lines representing posterior intervals.

For example, consider the middle bars in the center left plot.
Here, blue dashed estimates show that, even among subjects
that state a preference for counter-attitudinal media, this
media results in more negative sentiment than entertainment—
while small, the naïve estimate is negative and statistically
significant at the 95% confidence level. In contrast, the sharp
bounds, centered directly on zero, show that this result may
be misleading for the group that would actually choose
counter-attitudinal media, because inconsistency in stated
and true preferences may be systematically correlated with
responses. Indeed, in Section 7.3, we will show that it is highly
sensitive to assumptions about the informativeness of the stated
preference. The greatest source of this discrepancy is that for
counter-attitudinal media, stated preferences are particularly
inconsistent with actual choices. In the free-choice condition,
over 20% of subjects stating this preference went on to choose
other media.

We now briefly discuss the remaining estimates in the left
panel of Figure 2, starting with the top left and proceeding
clockwise. In the top plot, all bounds agree with naïve estimates:
differences in sentiment toward pro-attitudinal media and
entertainment are indistinguishable, except for a small adverse
reaction among those with a true preference for entertainment
(top right). These same subjects have a significant and seemingly
larger adverse reaction to counter-attitudinal media (center
right), and the difference between pro- and counter-attitudinal
media among this group is statistically significant (lower right).
Among units that would choose counter-attitudinal media,
naïve estimates suggest a significantly more positive reaction

to pro- versus counter-attitudinal media (lower middle), but
these results again implicitly rest on strong assumptions about
the informativeness of stated preferences. Not surprisingly,
those who would choose pro-attitudinal media react more
positively toward it than toward counter-attitudinal media
(lower left). Finally, estimated bounds appear to support the
naïve estimate that those who would choose pro-attitudinal
media have a negative response to counter-attitudinal media
(vs. entertainment, center left) and these bounds are statistically
distinct from zero.

Finally, we present nonparametric sharp bounds for the
binary outcome of whether subjects are likely to discuss the
story with a friend. As explained in Section 4.2, these are the
narrowest possible bounds that can be found with the available
information. We discuss statistically significant results only.
Among units that would choose pro-attitudinal media, bounds
validate the naïve estimate that this media has a large effect on
the dissemination of information, both relative to entertainment
(top left) and relative to counter-attitudinal media (bottom
left). Naïve estimates suggest a similar but smaller pattern of
effects for those who would choose entertainment. However,
the estimated bounds are, respectively, consistent with the naïve
estimate in sign but statistically inconclusive (vs. entertainment,
top right) and entirely inconclusive (vs. counter-attitudinal
media, bottom right).

7.3. Sensitivity Analysis

Next, we apply the sensitivity analysis developed in Section 5
and show how the bounds become tighter as we allow less
difference between the average potential outcomes conditional
on a stated preference versus actual choice (ρ). For illustration,
we focus on the sentiment index. The results are presented in
Figure 3. The results for the binary discussion indicator are in
Figure A.1 in the Web Appendix.

Using bounds on mean choice-specific potential outcomes
(not presented), we find that the estimated maximal difference
for any strata is 0.18, approximately one SD in the outcome
variable. Thus, in Figure 3, estimated sensitivity results have
converged to the estimated bounds at or below this level of ρ.
For most strata, differences above 0.1 can be ruled out. For some
ACTEs, sensitivity results are not shown for low values of ρ

because in this region, it becomes impossible to simultaneously
satisfy the sensitivity constraints implied by ρ and the naïve
results, on the one hand, and the bounding constraints, on the
other.

For illustration we focus on the middle plot in the center
row of Figure 3. Neglecting sampling error, the true value of ρ

here should lie somewhere in [0.02, 0.18]. The naïve estimates
suggest that counter-attitudinal media negatively affects media
sentiment (relative to entertainment) even among those who
would choose counter-attitudinal media (middle plot), some-
what surprisingly. However, the upper bound is statistically
indistinguishable from zero when Assumption 3 is even slightly
relaxed by ρ = 0.03. Estimated bounds include zero for values
of ρ > 0.07, less than half of a SD in the observed outcome
variable.



12 D. KNOX ET AL.

Figure 3. Sensitivity analysis for the ACTE of partisan news media. The plots correspond to the left panel of Figure 2. On the left side of each plot, a blue point and error bars
represent the naïve estimate and 95% asymptotic confidence intervals, respectively. On the right side, thick red error bars represent no-assumption bounds and thin red
error bars represent 95% posterior intervals. The dark shaded region between these depicts how bounds grow narrower as additional information from the naïve estimates
are incorporated (ρac = ρa′c = ρ grows small). Lightly shaded regions are 95% posterior regions for sensitivity results.

8. Simulations

To evaluate the finite-sample performance of our procedure
in a naturalistic setting, we conduct Monte Carlo simulations
that are based closely on the observed data from our empirical
application. We design our simulation study to consider two
challenges that regularly arise in PPTs: the discrepancy between
stated preferences and actual choices, and the possibility that
choices are related to potential outcomes in an unobservable
way. We quantify these complications via a “choice divergence”
(CD) parameter and an “outcome divergence” (OD) parame-
ter, respectively, and examine how bias and coverage rates are
affected as they become more severe.

8.1. Divergence of Actual Choices From Stated Preferences

In our first set of simulations, we begin by generating a hypothet-
ical population for which the observable margins are identical

to those of our empirical sample. For the unobserved variables,
such as Yi(a) for Ci �= a, we make the most generous assump-
tion possible—that potential outcomes among the unobserved
choice-based subgroups are identical in distribution—and gen-
erate the values accordingly. This forms our baseline simulation
data, in which Assumption 3 is satisfied and therefore the naïve
estimator for the ACTE should perform well.

We then introduce the CD parameter, which takes on values
in [0, 1] and captures the informativeness of the stated pref-
erences. That is, we regenerate the actual choice C∗

i such that
Pr(C∗

i = c|Si = s) = (1 − CD) Pr(Ci = c|Si = s) + CD/J,
where Ci ∈ {1, . . . , J} for each c and s. When CD = 0, the joint
distribution of C∗

i and Si is identical to that of the experimental
sample (i.e., with 87% overall agreement between stated prefer-
ences and actual choices). When CD = 1, stated preferences are
entirely uninformative, and the choice probabilities are 1/3 for
every treatment.
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For each value at which the CD parameter is set (0, 1/3, 2/3,
and 1), we draw 500 sample datasets of size 3000. We focus
on τ(0, 2|0) for illustration. Naïve ACTE estimates and bounds
estimates are computed in each sample dataset, averaged, and
compared to the population ACTE and bounds to assess bias.
The results of these simulations are collected in Table 2 (left
panel) and show that the bias of the naïve estimator increases
as stated preferences diverge more from actual choices. At the
extreme, the bias of the naïve estimate is well over double the
SE of the naïve estimate in a particular sample dataset (roughly
0.016 at this sample size). In contrast, ACTE bounds estimates
are centered almost exactly on their population analogue, and
bias is unaffected by the CD parameter.

For each sample dataset, we also implement the procedure
described in Section 6 to compute 95% posterior intervals on
the bounds. The proportion of intervals that fully contain the
population bounds is reported in Table 2 (right panel) for sam-
ple sizes of ranging from 500 to 50,000 units. We find that
when stated preferences are highly divergent from actual choices
(CD is high), coverage rates are less than nominal with small
sample sizes, but they become indistinguishable from 95% as
the number of observations increase. We note that when the
bounds are wide relative to their credible interval, coverage of
the population bounds at level 1 − α corresponds to a worst-
case coverage of the population ACTE at level 1 − α/2. In Web
Appendix A7, the proposed method is shown to outperform
both alternative bootstrap-based approach and an extension to
the parametric model of Long, Little, and Lin (2008).

8.2. Divergence of Outcomes Between Choice Groups

Next, we define the OD parameter, also in [0, 1], which con-
trols the distributions of the unobservable potential outcomes,
Pr(Yi(a) ≤ y|Si = s, Ci = c, Di = 0) when c �= a.
Specifically, we generate missing potential outcomes for the free-
choice group such that Pr(Yi(a) ≤ y|Si = s, Ci = c, Di = 0) =
(1−OD){F(y|s, c, 1)−F(y|s, c, 0)P(a|s, 0)}/{1−P(a|s, 0)}+OD·
1{F(y|s, a, 1) − F(y|s, a, 0)P(a|s, 0) < P(c|s, 0)}{F(y|s, a, 1) −
F(y|s, a, 0)P(a|s, 0)}/P(c|s, 0) for a particular c �= a, which then
fixes the distribution of potential outcomes in the remaining
choice-based subgroup. All values of the OD parameter produce
observationally equivalent simulation populations, but the pop-
ulation ACTE differs depending on its setting. When OD = 1,
the population ACTE is the most extreme effect consistent with
the observable margins, lying on the endpoint of the population
bounds. In contrast, OD = 0 produces the least extreme popu-
lation satisfying the same observed margins, with Pr(Yi(a) ≤
y|Si = s, Ci = c) identical to Pr(Yi(a) ≤ y|Si = s, Ci = c′). In
these simulations, CD is set to zero.

Table 3 (left panel) presents the bias of naïve and bounds esti-
mates at varying levels of the OD parameter, with sample sizes of
3000. Once again, results demonstrate that while naïve estimates
are accurate in a best-case simulation, bias is on the order of
one SE of any particular naïve estimate when assumptions are
violated even moderately (OD between 0.33 and 0.67). Bias of
the proposed bounds procedure remains negligible for all OD
values. Table 3 (right panel) shows that coverage levels are as
expected over a wide range for OD and N, or perhaps slightly
conservative at smaller sample sizes.

Table 2. Estimated bias and coverage rates for various CD values.

CD = 0.00 CD = 0.33 CD = 0.67 CD = 1.00

Naïve 0.002 0.011 0.023 0.038
Min −0.001 −0.001 −0.001 0.000
Max −0.001 −0.001 −0.001 −0.001

N CD = 0.00 CD = 0.33 CD = 0.67 CD = 1.00

500 0.959 0.944 0.914 0.926
1000 0.956 0.926 0.930 0.924
3000 0.946 0.936 0.916 0.946
10,000 0.938 0.938 0.934 0.930
50,000 0.946 0.944 0.940 0.948

NOTE: Results for each CD value are based on 500 sample datasets. The bias results for the naïve and the bounds lower/upper endpoint estimators (left) are based on
datasets of size N = 3000. The bounds posterior interval coverage rates (right) have Monte Carlo SEs of approximately 0.01.

Table 3. Estimated bias and coverage rates for various OD values, holding CD at 0.

OD = 0.00 OD = 0.33 OD = 0.67 OD = 1.00

Naïve 0.002 0.011 0.020 0.030
Min −0.001 0.001 0.001 0.001
Max −0.001 −0.002 −0.002 −0.001

N OD = 0.00 OD = 0.33 OD = 0.67 OD = 1.00

500 0.959 0.967 0.970 0.962
1000 0.956 0.966 0.971 0.968
3000 0.946 0.954 0.950 0.968
10,000 0.938 0.954 0.958 0.966
50,000 0.946 0.954 0.954 0.946

NOTE: The left table presents bias results for the naïve and the bounds lower/upper endpoint estimators, and the right table presents bounds posterior interval coverage
rates. These results are based on the procedure of Table 2, which presents the same quantities for varying CD values.
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9. Concluding Remarks

Scholars of social and medical sciences have long sought
to enhance the external validity of randomized experiments
through various means. Medical researchers have often adopted
PPTs to incorporate the preferences of experimental subjects
over treatment options into their study designs, thereby
tackling the question of what impact treatments have on the
kinds of people who would actually take them if they were
allowed to choose. However, systematic analysis of causal and
statistical properties of PPTs has only just begun. In particular,
researchers have largely neglected the potential discrepancy
between subjects’ stated and revealed preferences in the existing
literature.

In this article, we seek to address the challenge of improving
external validity via a new experimental design for PPTs. The
proposed design involves measurement of both stated pref-
erences and actual choices as well as randomization into the
standard RCT or a free-choice condition. The methodology
we develop systematically addresses the potential inferential
threat caused by nonignorable differences between stated and
revealed preferences, using both nonparametric identification
analysis and sensitivity analysis. As we illustrate in an original
empirical example where we use the proposed framework, our
method enables inference on a causal quantity of interest that
captures the heterogeneity in treatment effects across revealed
preferences without relying on the assumption of ignorable
measurement error. We provide open-source software, ppt,
which implements the proposed methodology.

Future statistical work on PPTs should investigate the con-
sequence of noncompliance and differential attrition on the
estimation of ACTEs, among other inferential challenges left
unaddressed by the current article. An important motivation
for PPTs in medical research is the concern that a patient who
strongly prefers one treatment option may not follow experi-
mental protocols and cross over to another treatment arm or out
of the study, damaging the internal validity of the experiment.
Forcing patients into treatment options against their preferences
may also be considered unethical in some applications (Lambert
and Wood 2000). One natural direction for future research is,
therefore, to incorporate such complications under the current
framework.

Supplementary Materials

The online supplementary materials contain the Web Appen-
dices referred to in the main text. They consist of the follow-
ing sections: (1) Observable Implications of Assumption 3; (2)
Derivation of Equation 4; (3) Proof of Proposition 1; (4) Proof
of Proposition 2; (5) Statistical Inference for the Bounds; (6) Sta-
tistical Inference for the Sensitivity Analysis; and (7) Additional
Simulation Results. (UASA_A_1585248_SM6304.zip)
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Supplementary Materials

A.1 Observable Implications of Assumption 3

In this section, we derive the two observable implications of Assumption 3 described in Section 3.3.

First, Assumption 3 implies,

E[Yi(a)|Ci = a] = E[Yi(a)|Si = a], (10)

for all a ∈ A. This relationship directly implies equation (2) under Assumptions 1 and 2. Second, note

that equation (10) also implies,

E[Yi(a)|Ci = a] = E[Yi(a)|Ci = a, Si = a] Pr(Ci = a|Si = a)

+ E[Yi(a)|Ci 6= a, Si = a] Pr(Ci 6= a|Si = a)

⇔ E[Yi(a)|Ci 6= a, Si = a] =
E[Yi|Ci = a,Di = 0]− E[Yi|Ci = Si = a,Di = 0]Pr(Ci = a|Si = a,Di = 0)

1− Pr(Ci = a|Si = a,Di = 0)

for all a ∈ A. Setting the unobserved term in the left-hand side to its theoretical maximum and minimum

yields equation (3).

A.2 Derivation of Equation (4)

First, consider E[Yi(a)|Ci = c]. Assumptions 1 and 2 imply Pr(Ci = c, Si = s) = Pr(Ci = c, Si =

s|Di = 0), E[Yi(c)|Ci = c, Si = s] = E[Yi|Ci = c, Si = s,Di = 0], E[Yi(a)] = E[Yi|Ai = a,Di = 1],

and E[Yi(a)|Si = s] = E[Yi|Si = s, Ai = a,Di = 1]. Now, note that

E[Yi|Ai = a,Di = 1] = E[Yi(a)] =
J−1∑
c′=0

E[Yi(a)|Ci = c′] Pr(Ci = c′),

by Assumptions 1, 2 and the law of total expectation. Substituting observed outcomes from the free-

choice group and rearranging terms, we have

E[Yi(a)|Ci = c] =
1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a,Di = 1]

−E[Yi|Ci = a,Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a,c} E[Yi(a)|Ci = c′] Pr(Ci = c′|Di = 0)


1



because of Assumptions 1 and 2. By the same token,

E[Yi(a
′)|Ci = c] =

1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a′, Di = 1]

−E[Yi|Ci = a′, Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a′,c} E[Yi(a′)|Ci = c′] Pr(Ci = c′|Di = 0)


The quantity of interest is therefore

τ(a, a′|c) =
1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a,Di = 1]

−E[Yi|Ci = a,Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a,c} E[Yi(a)|Ci = c′] Pr(Ci = c′|Di = 0)


− 1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a′, Di = 1]

−E[Yi|Ci = a′, Di = 0]Pr(Ci = a′|Di = 0)

−
∑

c′ 6∈{a′,c} E[Yi(a′)|Ci = c′] Pr(Ci = c′|Di = 0)


for any a, a′ and c. Thus, under Assumptions 1 and 2, we have 2(J − 2) terms that remain unidentified

when a 6= a′ 6= c. When a′ = c, the above simplifies to

τ(a, c|c) = E[Yi(a)|Ci = c]− E[Yi|Ci = c,Di = 0]

=
1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a,Di = 1]

−E[Yi|Ci = a,Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a,c} E[Yi(a)|Ci = c′] Pr(Ci = c′|Di = 0)


− E[Yi|Ci = c,Di = 0]

and J − 2 terms remain unidentified.

A.3 Proof of Proposition 1

We begin by establishing several lemmas.

Lemma .1 Let Γa(y, c|s, a) = Pr(Yi(a) ≤ y, Ci ≤ c|Si = s, Ci 6= a). Under Assumptions 1 and 2, the

sharp upper and lower bounds on Γa(y, c|s, a), denoted by Γ+
a (y, c|s, a) and Γ−a (y, c|s, a) respectively,

are identified as follows.

Γ+
a (y, c|s, a) = min

{
H(c|s, a, 0),

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

1− P (a|s, 0)

}
,

Γ−a (y, c|s, a) = max

{
0, H(c|s, a, 0) +

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

1− P (a|s, 0)
− 1

}
,

2



for y ∈ Y , a, c, s ∈ A and d ∈ {0, 1}, where H(c|s, a, 0) = Pr(Ai ≤ c|Si = s, Ai 6= a,Di = 0) and

F (y|s, a, d) and P (a|s, 0) are as defined in Proposition 1.

Proof. By the Fréchet-Hoeffding theorem, the sharp upper and lower bounds of the bivariate joint distri-

bution function Γa(y, c|s, a) are given by,

Γ+
a (y, c|s, a) = min {Γa(∞, c|s, a),Γa(y,∞|s, a)} , (11)

Γ−a (y, c|s, a) = max {0,Γa(∞, c|s, a) + Γa(y,∞|s, a)− 1} . (12)

Under Assumption 1, Γa(∞, c|s, a) = Pr(Ci ≤ c|Si = s, Ci 6= a) = Pr(Ai ≤ c|Si = s, Ai 6= a,Di =

0) = H(c|s, a, 0) for any c, s and a ∈ A. Under Assumptions 1 and 2, we have

Γa(y,∞|s, a) = Pr(Yi(a) ≤ y|Si = s, Ci 6= a)

=
Pr(Yi(a) ≤ y|Si = s)− Pr(Yi(a) ≤ y, Ci = a|Si = s)

Pr(Ci 6= a|Si = s)

=
Pr(Yi(a) ≤ y|Si = s)− Pr(Yi(a) ≤ y|Ci = a, Si = s) Pr(Ci = a|Si = s)

1− Pr(Ci = a|Si = s)

=
F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

1− P (a|s, 0)
,

for any a and s ∈ A. Substituting these to equations (11) and (12) yields the results in Lemma .1.

Lemma .2 Let A∗i , C
∗
i and S∗i be reordered versions of Ai, Ci and Si, respectively, such that C∗i = 0 iff

Ci = c (and likewise for A∗i and S∗i ). Then, the resulting sharp bounds on Γa(y, c | s, a)− Γa(y, c− 1 |

s, a) are also the sharp bounds on Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a) for any y and c ∈ A, where

Γ∗a(y, c | s, a) = Pr(Yi(a) ≤ y, C∗i ≤ c|Si = s, Ci 6= a).

Proof. First, consider the sharp bounds on Γa(y, c)− Γa(y, c− 1). In addition to the Fréchet-Hoeffding

constraints on its constituent parts,

Γa(y, c|s, a) ∈
[
Γ−a (y, c|s, a),Γ+

a (y, c|s, a)
]

Γa(y, c− 1|s, a) ∈
[
Γ−a (y, c− 1|s, a),Γ+

a (y, c− 1|s, a)
]
,
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the increase in cumulative probability from c− 1 to c is also subject to

Γa(y, c)− Γa(y, c− 1) ∈ [0,Γa(∞, c)− Γa(∞, c− 1)] .

The combination of these constraints yields

Γa(y, c|s, a)Γa(y, c− 1|s, a)

∈ [0,Γa(∞, c)− Γa(∞, c− 1)]
⋃

([
Γ∗−a (y, c|s, a),Γ∗+a (y, c|s, a)

]
−
[
Γ∗−a (y, c− 1|s, a),Γ∗+a (y, c− 1|s, a)

])

∈

max


0,

max

 0,

Γa(∞, c|s, a) + Γa(y,∞|s, a)− 1

−min

 Γa(∞, c− 1|s, a),

Γa(y,∞|s, a)



 ,

min


Γa(∞, c)− Γa(∞, c− 1),

min

 Γa(∞, c|s, a),

Γa(y,∞|s, a)

−max

 0,

Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1






Next, consider the sharp bounds on Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a). Because −1 lies below the

lowest possible value of C∗i , Γ∗a(y,−1 | s, a) is necessarily zero, and bounds on the difference reduce to

bounds on Γ∗a(y, 0 | s, a),

Γ∗a(y, 0|s, a) ∈
[
Γ∗−a (y, 0|s, a),Γ∗+a (y, 0|s, a)

]
∈
[

max {0,Γ∗a(∞, 0|s, a) + Γ∗a(y,∞|s, a)− 1} ,min {Γ∗a(∞, 0|s, a),Γ∗a(y,∞|s, a)}
]

∈
[

max {0,Pr(Ai = c | Si = s, Ai 6= a,Di = 0) + Γa(y,∞|s, a)− 1} ,

min {Pr(Ai = c | Si = s, Ai 6= a,Di = 0),Γa(y,∞|s, a)}
]

∈
[

max {0,Γa(∞, c|s, a)− Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1} ,

min {Γa(∞, c|s, a)− Γa(∞, c− 1|s, a),Γa(y,∞|s, a)}
]
.

We now show that the upper bound on Γa(y, c) − Γa(y, c − 1) is identical to the upper bound on
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Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a) in each of the following four possible cases. (1) Γa(∞, c|s, a) ≤

Γa(y,∞|s, a) and 0 ≥ Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1. The upper bound on Γa(y, c)−Γa(y, c−1) re-

duces to min {Γa(∞, c)− Γa(∞, c− 1),Γa(∞, c|s, a)−max {0,Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1}} .

This implies Γa(∞, c|s, a)−Γa(∞, c−1|s, a) ≤ Γa(y,∞|s, a), and so the upper bound on Γ∗a(y, 0 | s, a)

becomes Γa(∞, c|s, a)− Γa(∞, c− 1|s, a). Since 0 ≥ Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1, the upper

bound on Γa(y, c) − Γa(y, c − 1) further reduces to min {Γa(∞, c)− Γa(∞, c− 1),Γa(∞, c|s, a)} =

Γa(∞, c) − Γa(∞, c − 1), which is identical to the upper bound on Γ∗a(y, 0 | s, a). (2) Γa(∞, c|s, a) ≤

Γa(y,∞|s, a) and 0 < Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1. The upper bound on Γa(y, c)−Γa(y, c−1)

becomes min {Γa(∞, c)− Γa(∞, c− 1),Γa(∞, c|s, a)− (Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1)} =

Γa(∞, c) − Γa(∞, c − 1), since 1 − Γa(y,∞|s, a) > 0. This is again identical to the upper bound

on Γ∗a(y, 0 | s, a). (3) Γa(∞, c|s, a) > Γa(y,∞|s, a) and 0 ≥ Γa(∞, c − 1|s, a) + Γa(y,∞|s, a) − 1.

The upper bound on Γa(y, c)− Γa(y, c− 1) reduces to min{Γa(∞, c)− Γa(∞, c− 1),Γa(y,∞|s, a)−

max{0,Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1}}. Since 0 ≥ Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1, the up-

per bound on Γa(y, c)− Γa(y, c− 1) further reduces to min {Γa(∞, c)− Γa(∞, c− 1),Γa(y,∞|s, a)},

which is the original upper bound given for Γ∗a(y, 0 | s, a). (4) Γa(∞, c|s, a) > Γa(y,∞|s, a) and

0 < Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1. The upper bound on Γa(y, c)−Γa(y, c−1) further reduces to

min {Γa(∞, c)− Γa(∞, c− 1), 1− Γa(∞, c− 1|s, a)} = Γa(∞, c) − Γa(∞, c − 1). This implies that

Γa(∞, c|s, a)−Γa(∞, c−1|s, a) < Γa(y,∞|s, a). The upper bound on Γ∗a(y, 0 | s, a) then also becomes

Γa(∞, c|s, a)− Γa(∞, c− 1|s, a).

Finally, we show that the lower bound on Γa(y, c) − Γa(y, c − 1) is identical to the upper bound on

Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a) in each of the following three possible cases. (1) 0 ≥ Γa(∞, c|s, a) +

Γa(y,∞|s, a) − 1. The lower bound on Γa(y, c) − Γa(y, c − 1) reduces to max{0,−min{Γa(∞, c −

1|s, a),Γa(y,∞|s, a)}} = 0. Because Γa(∞, c|s, a) ≥ Γa(∞, c|s, a) − Γa(∞, c − 1|s, a), the lower

bound on Γ∗a(y, 0 | s, a) also becomes 0. (2) 0 < Γa(∞, c|s, a) + Γa(y,∞|s, a) − 1 and Γa(∞, c −

1|s, a) ≤ Γa(y,∞|s, a). The lower bound on Γa(y, c)− Γa(y, c− 1) reduces to max{0,Γa(∞, c|s, a) +

Γa(y,∞|s, a)− 1−min{Γa(∞, c− 1|s, a),Γa(y,∞|s, a)}}. Since Γa(∞, c− 1|s, a) ≤ Γa(y,∞|s, a),
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the lower bound on Γa(y, c)−Γa(y, c−1) reduces further to max{0,Γa(∞, c|s, a)+Γa(y,∞|s, a)−1−

Γa(∞, c− 1|s, a)}, which is the original lower bound given for Γ∗a(y, 0 | s, a). (3) 0 < Γa(∞, c|s, a) +

Γa(y,∞|s, a)−1 and Γa(∞, c−1|s, a) > Γa(y,∞|s, a). The lower bound on Γa(y, c)−Γa(y, c−1) re-

duces further to max {0,Γa(∞, c|s, a) + Γa(y,∞|s, a)− 1− Γa(y,∞|s, a)} = 0. Since Γa(∞, c|s, a)−

Γa(∞, c − 1|s, a) + Γa(y,∞|s, a) − 1 < Γa(∞, c|s, a) − Γa(y,∞|s, a) + Γa(y,∞|s, a) − 1 < 0 and

Γa(∞, c|s, a)− 1 ≤ 0, the lower bound for Γ∗a(y, 0 | s, a) is also zero.

Lemma .3 Let Φa(y|s, c) = Pr(Yi(a) ≤ y|Si = s, Ci = c). Under Assumptions 1 and 2, the sharp

upper and lower bounds on Φa(y|s, 0), denoted by Φ+
a (y|s, 0) and Φ−a (y|s, 0) respectively, are identified

as

Φ+
a (y|s, 0) = min

{
1,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

P (0|s, 0)

}
and

Φ−a (y|s, 0) = max

{
0, 1 +

P (a|s, 0) + F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)− 1

P (0|s, 0)

}
for y ∈ Y and a, s ∈ A.

Proof. First, note that

Φa(y|s, c) = Pr(Yi(a) ≤ y|Si = s, Ci = c, Ci 6= a)

=
Pr(Yi(a) ≤ y, Ci ≤ c|Si = s, Ci 6= a)− Pr(Yi(a) ≤ y, Ci ≤ c− 1|Si = s, Ci =6= a)

Pr(Ci = c|Si = s, Ci 6= a)

=
Γa(y, c|s, a)− Γa(y, c− 1|s, a)

Pr(Ci = c|Si = s, Ci 6= a)
,

for c 6= a. By Lemma .1, the sharp upper and lower bounds on Φa(y|s, c) are given by

Φ+
a (y|s, c) = min

{
1,

Γ+
a (y, c|s, a)− Γ−a (y, c− 1|s, a)

Pr(Ci = c|Si = s, Ci 6= a)

}
,

Φ−a (y|s, c) = max

{
0,

Γ−a (y, c|s, a)− Γ+
a (y, c− 1|s, a)

Pr(Ci = c|Si = s, Ci 6= a)

}
.

Because Γ+
a (y,−1|s, a) = Γ−a (y,−1|s, a) = 0 and by Lemma .1, these bounds simplify when c = 0 to

Φ+
a (y|s, 0) =

Γ+
a (y, 0|s, a)

Pr(Ci = 0|Si = s, Ci 6= a)
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= min

{
H(0|s, a, 0)

Pr(Ci = 0|Si = s, Ci 6= a)
,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

Pr(Ci = 0|Si = s, Ci 6= a) {1− P (a|s, 0)}

}
= min

{
H(0|s, a, 0)

Pr(Ai = 0|Si = s, Ai 6= a,Di = 0)
,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

Pr(Ai = 0|Si = s, Ai 6= a,Di = 0) Pr(Ai 6= a|Si = s,Di = 0)

}
= min

{
1,
F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

Pr(Ai = 0|Si = s,Di = 0)

}
and

Φ−a (y|s, 0) =
Γ−a (y, 0|s, a)

Pr(Ci = 0|Si = s, Ci 6= a)

= max

{
0,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)− {1−H(0|s, a, 0)} {1− P (a|s, 0)}
Pr(Ci = 0|Si = s, Ci 6= a) {1− P (a|s, 0)}

}
= max

{
0,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)− 1 + P (a|s, 0)

Pr(Ai = 0|Si = s,Di = 0)
+ 1

}
.

Now we provide a proof for the bounds in Proposition 1. We only consider the case of c = 0. This

can be done without loss of generality by Lemma .2. Now, note that τ(a, a′|0) can be written under

Assumption 1 as,

τ(a, a′|0) =
∑
s∈A

{π(a|s, 0)− π(a′|s, 0)}Pr(Si = s|Ai = 0, Di = 0), (13)

where π(a|s, c) ≡ E[Yi(a)|Si = s, Ci = c] for any a and c ∈ A. Under Assumption 1, π(a|s, 0) can be

point-identified when a = 0 as

π(0|s, 0) = E[Yi|Ai = 0, Si = s,Di = 0], (14)

for any s ∈ A, but not when a 6= 0. To find the sharp bounds on π(a|s, 0) when a 6= 0, note that

π(a|s, 0) = lim
y∗→−∞

{∫ ∞
y∗

1− Φa(y|s, 0) dy + y∗
}
.

By Lemma .3, π−(a|s, 0) ≤ π(a|s, 0) ≤ π+(a|s, 0) where

π−(a|s, 0) ≡ lim
y∗→−∞

{∫ ∞
y∗

1− Φ+
a (y|s, 0) dy + y∗

}
, (15)

π+(a|s, 0) ≡ lim
y∗→−∞

{∫ ∞
y∗

1− Φ−a (y|s, 0) dy + y∗
}
. (16)
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The bounds, π−(a|s, 0) and π+(a|s, 0), are the sharp lower and upper bounds on π(a|s, 0) because

Φ+
a (y|s, 0) and Φ−a (y|s, 0) are the sharp upper and lower bounds on Φa(y|s, 0), respectively.

Substituting Equations (14), (15) and (16) into Equation (13) and simplifying the terms yield the

sharp bounds on τ(a, 0|0),

∑
s∈A

{
π−(a|s, 0) Pr(Si = s|Ai = 0, Di = 0)

}
− E[Yi|Ai = 0, Di = 0]

≤ τ(a, 0|0) ≤ (17)∑
s∈A

{
π+(a|s, 0) Pr(Si = s|Ai = 0, Di = 0)

}
− E[Yi|Ai = 0, Di = 0]

for any a ∈ A. For τ(a, a′) where a 6= a′, we obtain the following bounds,

∑
s∈A

{
π−(a|s, 0)− π+(a′|s, 0)

}
Pr(Si = s|Ai = 0, Di = 0)

≤ τ(a, a′|0) ≤ (18)∑
s∈A

{
π+(a|s, 0)− π−(a′|s, 0)

}
Pr(Si = s|Ai = 0, Di = 0)

which are not necessarily sharp because π−(a|s, 0) and π+(a′|s, 0) may not be simultaneously attainable,

and vice versa. Finally, Lemma .2 implies that (17) and (18) are both valid as bounds for τ(a, c|c) and

τ(a, a′|c), respectively, for any c ∈ A. This completes the proof of Proposition 1.

A.4 Proof of Proposition 2

We begin by considering the joint distribution of all variables in the study population when J = 3:

Pr(Si = s,Di = d, Ci = c, Ai = a, Yi = y, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2)

= Pr(Yi(d) = y|Ai = a, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2)

×Pr(Ai = a|Ci = c,Di = d)

×Pr(Si = s, Ci = c, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2) Pr(Di = d)

= Pr(Yi(d) = y|Ai = a, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2)

×{Pr(Ai = a|Ci = c,Di = 0)(1− d) + Pr(Ai = a|Di = 1)d}
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×Pr(Si = s, Ci = c, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2) Pr(Di = d), (19)

where the first equality follows from Assumption 1 and the fact that Yi(0), Yi(1), Yi(2) and Ai are

sufficient for Yi and that Ci and Di are sufficient for Ai. The second equality is by Assumption 2. Note

that Pr(Yi(d) = y|Yi(0), Yi(1), Yi(2)) and Pr(Ai = a|Ci, Di = 0) are degenerate and that Pr(Ai =

a|Di = 1) and Pr(Di = d) are fixed by the experimental design. Therefore, the remaining component

of equation (19), Pr(Si = s, Ci = c, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2), completely specifies the data

generating process, with |A|2 · |Y||A|− 1 = J22J − 1 free parameters needed to describe it. Balke (1995,

Section 3.5) shows that bounds on counterfactual probabilities found by optimizing over such a complete

model are sharp; that is, they are guaranteed to be at least as tight as bounds calculated from any partial

(marginalized) model.

We express the complete model in terms of φy0,y1,y2,s,c ∈ Φ. First, note that
∑

y0∈{0,1}
∑

y1∈{0,1}∑
y2∈{0,1}

∑
s′∈A

∑
c′∈A φya,ya′ ,ya′′ ,s′,c′ = 1. Next, from the free-choice condition, we observe Pr(Si =

s, Ci = c, Yi = y | Di = 0), which is completely specified by |A|2 · |Y| − 1 = 2J2 − 1 free parameters.

We use the following 2J2 marginals as constraints on φy0,y1,y2,s,c (with one redundant):

Pr(Si = s,Ai = c | Di = 0) = Pr(Si = s, Ci = c) =
∑
a∈A

∑
ya∈{0,1}

φy0,y1,y2,s,c, (20)

Pr(Si = s,Ai = c, Yi = 1 | Di = 0) = Pr(Si = s, Ci = c, Yi(c) = 1) =
∑
a6=c

∑
ya∈{0,1}

φy0,y1,y2,s,c, (21)

for all s and c ∈ A. Similarly, from the forced-choice condition, we observe

Pr(Si = s, Ai = a, Yi = y | Di = 1)

= Pr(Yi = y | Si = s, Ai = a,Di = 1) Pr(Ai = a | Di = 1) Pr(Si = s | Di = 1)

where the equality holds by Assumption 2. Because Pr(Ai = a | Di = 1) is fixed a priori by randomiza-

tion, the observed distribution from the forced-choice arm can be fully characterized by (|Y| − 1)|A|2 +

|A|−1 = J2 +J−1 free parameters. We use the following J2 +J margins as constraints on φy0,y1,y2,s,c,
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noting that one of them is redundant:

Pr(Si = s | Ai = a,Di = 1) = Pr(Si = s) =
∑
a∈A

∑
ya∈{0,1}

∑
c∈A

φy0,y1,y2,s,c, (22)

Pr(Si = s, Yi = 1 | Ai = a,Di = 1) = Pr(Si = s, Yi(a) = 1) =
∑
a′∈A

∑
ya′∈{0,1}

∑
c∈A

φy0,y1,y2,s,c · 1{ya = 1},

for all s and a ∈ A. However, note that equation (22) are merely linear combinations of equation (20)

and can therefore be omitted.

Finally, the quantity of interest can be written in terms of φy0,y1,y2,s,c as,

τ(a, a′ | c) = E[Yi(a) | Ci = c]− E[Yi(a
′) | Ci = c]

=

∑
y0∈{0,1}

∑
y2∈{0,1}

∑
s φ1,y1,y2,s,c

Pr(Ai = c|Di = 0)
−
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s φy0,1,y2,s,c

Pr(Ai = c|Di = 0)
,

assuming a′ = 1 and a = 0 without loss of generality. Solving for the extrema of τ(a, a′ | c) under

the above set of linear constraints, which incorporate the full information in the observed data as well as

probability axioms, yields its sharp upper and lower bounds as displayed in Proposition 2.

A.5 Statistical Inference for the Bounds

Let p = [ps] = [Pr(Si = 0), · · · ,Pr(Si = J − 1)]> be a stochastic vector of stated-preference

probabilities. q = [qsc] = [Pr(Ci = c|Si = s)] is a row-stochastic matrix, where row s, denoted

qs, represents the distribution of true preferences (Ci) among those with the stated preference Si =

s. Also let π+ = {π+(a|s, c) : a, s, c ∈ A} and π− = {π−(a|s, c) : a, s, c ∈ A}, where π+(a|s, c)

and π−(a|s, c) are defined in Appendix A.3. Let F 1 = {F (y|s, a, d) : s, a ∈ A, d = 1} and F 0 =

{F (y|s, a, d) : s, a ∈ A, d = 0}, where F (y|s, a, d) is defined in Proposition 1. Finally, we use τ+ and

τ− to denote the sets of the upper and lower bounds on τ(a, a′|c) for all a, a′, c ∈ A, respectively, and

X to indicate all observed data.

Our goal is to approximate the posterior distribution of (τ−, τ+) with Monte Carlo simulations. We

begin by the general bounds in Proposition 1. Note that τ− and τ+ are deterministic functions of π−,
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π+, p and q, such that

τ−(a, a′|c) =
∑
s∈A

(
π−(a|s, c)− π+(a′|s, c)

) qscps∑
s′∈A qs′cps′

,

τ+(a, a′|c) =
∑
s∈A

(
π+(a|s, c)− π−(a′|s, c)

) qscps∑
s′∈A qs′cps′

for all a, a′, c ∈ A. Therefore, we consider the problem of simulating samples from the joint posterior of

π−, π+, p and q, which can be written as,

f(π+,π−,p, q|X) = f(π+,π−|F̂ 1, F̂ 0, q) f(q|n0
s) f(p|n)

under Assumptions 1 and 2, where F̂ 1 and F̂ 0 are empirical CDFs corresponding to F 1 and F 0, re-

spectively. For p and q, we use the noninformative improper priors p ∼ Dirichlet(0) and qs ∼

Dirichlet(0) ∀ s ∈ A. Then, qs |X ∼ Dirichlet(n0
s) ∀ s and p |X ∼ Dirichlet(n).

We are now left with f(π+,π−|F̂ 1, F̂ 0, q). Because of the way these bounds are constructed (see

Proposition 1),

π+(a|s, c), π−(a|s, c) ⊥⊥ π+(a|s′, c), π−(a|s′, c) | F̂ 1, F̂ 0, q and

π+(a|s, c), π−(a|s, c) ⊥⊥ π+(a′|s, c), π−(a′|s, c) | F̂ 1, F̂ 0, q

for s 6= s′ and a 6= a′. Therefore, to fully characterize the posterior of [τ−(a′, a′′|c), τ+(a′, a′′|c)] for each

a, a′′ and c ∈ A, it is sufficient to only consider the bivariate posterior distribution of [π+(a|s, c), π−(a|s, c)]

for a ∈ {a′, a′′} and s ∈ A. Note that, under mild assumptions and with a sufficiently large sample size,

the posterior for each pair [π+(a|s, c), π−(a|s, c)] can be approximated by a bivariate normal distribution

due to the Bayesian central limit theorem. That is, we have:π−(a|s, c)

π+(a|s, c)

 | q,X ≈ Normal


 π̄−(a|s, c, qs,X)

π̄+(a|s, c, qs,X)

 ,
 V −(a|s, c, qs,X) C(a|s, c, qs,X)

C(a|s, c, qs,X) V +(a|s, c, qs,X)


(23)

when N is sufficiently large, and the means and covariances can be approximated by the asymptotic

means and covariances of the frequentist sampling distributions of [π−(a|s, c), π+(a|s, c)], respectively,

as shown below. Note that priors on π−(a|s, c), π+(a|s, c) can be ignored and therefore left unspecified
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when N is large because of the Bernstein-von Mises theorem.

Let y be the natural lower bound of Yi(a) if it exists and min{Yi : Si = s, Ai = a}, which is

the lowest point at which the estimated conditional CDF, Γ̂a(y,∞|s, a), is nonzero, if it does not. Let

Γ−1
a (·) be the inverse of Γa(y,∞|s, a) (see Section A.3 for the definition) with respect to y, so that

Γ−1
a (Γa(y,∞|s, a)) = y, and let Γ̂−1

a (·) be its sample analogue, such that Γ̂−1
a (p) = min{y : p ≤

Γ̂a(y,∞|s, a)}. Let b = qsc
1−qsa . For the means, note that the π−(a|s, c) and π+(a|s, c) are functions of

F (y|s, a, 0), F (y|s, a, 1) and P (a|s, 0) (as shown in Appendix A.3), which can be consistently estimated

by their nonparametric maximum likelihood estimates F̂ (y|s, a, 0), F̂ (y|s, a, 1) and qsa, respectively.

This implies the following plug-in estimators for π̄−(a|s, c, qs,X) and π̄+(a|s, c, qs,X):

ˆ̄π−(a|s, c, qs,X) = Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy

ˆ̄π+(a|s, c, qs,X) = Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy,

where we used the fact that Φ+
a (y|s, c) = 1 for y ≥ Γ−1

a (b) and Φ−a (y|s, c) = 0 for y ≤ Γ−1
a (1− b) (see

Appendix A.3 for the definitions of Φ+
a (y|s, c) and Φ−a (y|s, c)).

For the variances and covariances, we use the fact that for any ECDF F̂ (·), Cov
(
F̂ (a), F̂ (b)

)
=

F (a)−F (a)F (b)
n

for a ≤ b where n is the number of steps in F̂ (·).

V −(a|s, c, qs,X)

= Var

(
Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy

)

=

(
1

qsc

)2

Var

(∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa dy

)

=

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

= 2

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy
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= 2

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov
(
F̂ (y|s, a, 1), F̂ (x|s, a, 1)

)
dxdy

+ 2

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov
(
F̂ (y|s, a, 0), F̂ (x|s, a, 0)

)
dxdy

=
2

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy,

where n0
sa is as defined in Section 6 and n1

sa =
∑N

i=1 1{Si = s, Ai = a,Di = 1}. Similarly,

V +(a|s, c, qs,X)

= Var

(
Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy

)

=
2

n1
sa

(
1

qsc

)2 ∫ ∞
Γ̂−1
a (1−b)

∫ ∞
y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n0
sa

(
qsa
qsc

)2 ∫ ∞
Γ̂−1
a (1−b)

∫ ∞
y

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

We estimate these quantities by substituting F (·|s, a, d) with F̂ (·|s, a, d) for d = 0, 1. A small sample

correction can optionally be applied to these estimates by replacing ndsa with ndsa − 1 for d = 0, 1.

The covariance between π−(a|s, c) and π+(a|s, c) depends on whether b < 1
2
, in which case they are

based on disjoint (but still correlated) portions of the same ECDFs, or whether b ≥ 1
2
, in which case they

are based on overlapping regions of the ECDFs and are therefore more correlated. If b ≥ 1
2
,

C (a|s, c, qs,X)

= Cov

(
Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy,

Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy

)

= Cov

(∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy,

∫ ∞
Γ̂−1
a (1−b)

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy

)
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=

(
1

qsc

)2 ∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

+2

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ Γ̂−1
a (b)

y

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

+

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ ∞
Γ̂−1
a (b)

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

=
1

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

+
2

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ Γ̂−1
a (b)

y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ Γ̂−1
a (b)

y

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

+
1

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ ∞
Γ̂−1
a (b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ ∞
Γ̂−1
a (b)

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

and if b < 1
2
,

C (a|s, c, qs,X)

=
1

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy.

Again, we estimate these by replacing F (·|s, a, d) with F̂ (·|s, a, d) for d = 0, 1. The small sample

correction can also be applied.

Finally, in the special case of a = c, the quantity π(a|s, c) = π(c|s, c) is point-identified. There-

fore, equation (23) reduces to a univariate normal distribution such that π̄ ≡ π̄−(c|s, c, qs,X) =

π̄+(c|s, c, qs,X) and V ≡ V −(c|s, c, qs,X) = V +(c|s, c, qs,X) = C(c|s, c, qs,X). In fact, the es-
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timators of these parameters provided above reduce to the sample mean and the sampling variance for

the mean, respectively, for the corresponding subgroup:

ˆ̄π = y +

∫ ∞
y

1− F̂ (y|s, c, 0)dy

= y +

∫ ∞
y

N∑
i=1

(
1− 1{Yi ≤ y}

)
· 1{Si = s, Ai = c,Di = 0}

n0
sc

dy

= y +
1

n0
sc

N∑
i=1

(∫ Yi

y

1 dy +

∫ ∞
Yi

0 dy

)
· 1{Si = s, Ai = c,Di = 0}

=
1

n0
sc

N∑
i=1

Yi · 1{Si = s, Ai = c,Di = 0},

and

V̂ =
2

n0
sc

∫ ∞
y

∫ ∞
y

F̂ (y|s, c, 0)
(

1− F̂ (x|s, c, 0)
)

dxdy

=
2

n0
sc

∫ ∞
y

∫ ∞
y

(
N∑
i=1

1{Yi ≤ y} · 1{Si = s, Ai = c,Di = 0}
n0
sc

)

×

(
N∑
j=1

(
1− 1{Yj ≤ x}

)
· 1{Sj = s, Aj = c,Dj = 0}

n0
sc

)
dxdy

=
2

(n0
sc)

3

∫ ∞
y

(
N∑
i=1

1{Yi ≤ y} · 1{Si = s, Ai = c,Di = 0}

)

×
N∑
j=1

(∫ ∞
y

(
1− 1{Yj ≤ x}

)
· 1{Sj = s, Aj = c,Dj = 0} dx

)
dy

=
2

(n0
sc)

3

N∑
i=1

N∑
j=1

∫ ∞
y

1{Yi ≤ y} · 1{Si = s, Ai = c,Di = 0}

×
(

1− 1{Yj ≤ y}
)

(Yj − y) · 1{Sj = s, Aj = c,Dj = 0} dy

=
2

(n0
sc)

3

N∑
i=1

∑
j∈J

1{Si = s, Ai = c,Di = 0} · 1{Sj = s, Aj = c,Dj = 0}
∫ Yj

Yi

(Yj − y) dy,

with J =
{
j ∈ 1, · · · , N : Yj ≥ Yi

}
=

1

n0
sc

N∑
i=1

∑
j∈J

(Yj − Yi)2

(n0
sc)

2
· 1{Si = s, Ai = c,Di = 0} · 1{Sj = s, Aj = c,Dj = 0}

=
1

(n0
sc)

2

N∑
i=1

(Yi − π̄)2 · 1{Si = s, Ai = c,Di = 0},

15



for any c, s ∈ A. Again, a small sample correction can be applied for V̂ by multiplying it by n0
sc/(n

0
sc−1).

For the binary-outcome bounds in Proposition 2, we employ a similar procedure. Let H = [Hsa] =

[Pr(Yi = 1|Si = s, Ai = a,Di = 1)] and G = [Gsa] = [Pr(Yi = 1|Si = s, Ai = a,Di = 0)].

In this case, τ− and τ+ are completely determined by H , G, p and q. The endpoints of the ACTE

bounds τ−(a, a′|c) and τ+(a, a′|c) are respectively given by the solutions to the linear problem described

in Proposition 2:

min
Φ

and max
Φ

1

Pr(Ai = c|Di = 0)

 ∑
a′′∈{0,1}

∑
s∈A

(
φ1,0,ya′′ ,s,c

− φ0,1,ya′′ ,s,c

) , (24)

s.t. φy0,y1,y2,s,c′ ≥ 0 ∀ y0, y1, y2, s, c
′,
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A
∑

c′∈A φy0,y1,y2,s,c′ = 1,∑
y0∈{0,1}

∑
y1∈{0,1}

∑
y2∈{0,1} φy0,y1,y2,s,c′ ·1{yc′ = 1} = qsc′psGsc′ ∀ s, c′,

∑
y0∈{0,1}

∑
y1∈{0,1}

∑
y2∈{0,1}

φy0,y1,y2,s,c′ = qsc′ps ∀ s, c′, and
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

c′∈A φy0,y1,y2,s,c′ · 1{ya′′ = 1} = psHsa′′

∀s, a′′, where Φ ≡ {φy0,y1,y2,s,c : y0 ∈ {0, 1}, y1 ∈ {0, 1}, y2 ∈ {0, 1}, s ∈ A, c ∈ A} .

The joint posterior of these parameters can be factorized as f(H ,G,p, q|X) = f(H|F̂ 1) f(G|F̂ 0)

f(q|n0
s)f(p|n) under Assumptions 1 and 2. We use the improper priors Hsa ∼ Beta(0, 0) and Gsa ∼

Beta(0, 0). The posteriors are then given by Hsa ∼ Beta(
∑N

i=1 1{Yi = 1, Si = s, Ai = a,Di =

1},
∑N

i=1 1{Yi = 0, Si = s, Ai = a,Di = 1}) and Gsa ∼ Beta(
∑N

i=1 1{Yi = 1, Si = s, Ai = a,Di =

0},
∑N

i=1 1{Yi = 0, Si = s, Ai = a,Di = 0}).

A.6 Statistical Inference for the Sensitivity Analysis

Our approach to statistical inference for the sensitivity analysis in Section 5 is similar to the procedure

outlined in Section 6. In addition to the parameters defined there, we have the naïve estimates η =

{η(a|s) : a, s ∈ A}, where η(a|s) = E[Yi|Si = s, Ai = a,Di = 1]. For a given value of the sensitivity

parameter, ρ = ρac = ρa′c, the sets of upper and lower bounds on τ(a, a′|c) are denoted τ−ρ and τ+
ρ for

a, a′, c ∈ A.

Given π−, π+, p, q, and η, we can deterministically find τ−ρ and τ+
ρ . Each pair of τ−ρ (a, a′|c) and
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τ+
ρ (a, a′|c) are equal to the endpoints of the following interval:

τ(a, a′|c) ∈([
η(a|c)− ρac, η(a|c) + ρac

]⋂[∑
s∈A

π−(a|s, c) qscps∑
s′∈A qs′cps′

,
∑
s∈A

π+(a|s, c) qscps∑
s′∈A qs′cps′

])

−

([
η(a|c)− ρa′c, η(a|c) + ρac

]⋂[∑
s∈A

π−(a′|s, c) qscps∑
s′∈A qs′cps′

,
∑
s∈A

π+(a′|s, c) qscps∑
s′∈A qs′cps′

])
.

We therefore simulate from the posterior of (τ−, τ+) by drawing samples of π−, π+, η, p and q,

f(π+,π−,η,p, q|X) = f(π+,π−,η|F̂ 1, F̂ 0, q) f(q|n0
s) f(p|n)

under Assumptions 1 and 2. Note that this differs from Appendix A.5 only in that the distributions of

π+ and π− are considered jointly with η. These have the additional independence relations

η(a|s) ⊥⊥ π+(a|s′, c), π−(a|s′, c), η(a|s′) | F̂ 1, F̂ 0, q and

η(a|s) ⊥⊥ π+(a′|s, c), π−(a′|s, c), η(a′|s) | F̂ 1, F̂ 0, q

for s 6= s′ and a 6= a′.

We can therefore approximate the posterior of sensitivity bounds by Monte Carlo simulation of p,

q, and the trivariate distributions [π−(a|s, c), π+(a|s, c), η(a|c)] for a ∈ {a′, a′′} and s ∈ A. By the

Bayesian central limit theorem, the latter is given by
π−(a|s, c)

π+(a|s, c)

η(a|c)

 | q,X ≈ Normal



π̄−(a|s, c, qs,X)

π̄+(a|s, c, qs,X)

η̄(a|c,X)

 ,Σ(a|s, c)

 , where

Σ(a|s, c) =


V −(a|s, c, qs,X) C(a|s, c, qs,X) C−η (a|s, c, qs,X)

C(a|s, c, qs,X) V +(a|s, c, qs,X) C+
η (a|s, c, qs,X)

C−η (a|s, c, qs,X) C+
η (a|s, c, qs,X) Vη(a|s, qs,X)


when N is large, and the additional parameters η̄, C−η , C+

η , and Vη are defined below.
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Note that naïve estimate η(a|s) is point-identified, and its posterior mean and variance are equivalent

to the sample mean and the sampling variance for the mean for the corresponding forced-choice units.

These are given by:

η̄(a|s) = y +

∫ ∞
y

1− F (y|s, a, 1) dy,

Vη(a|s) =
2

n1
sa

∫ ∞
y

∫ ∞
y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy.

Derivations closely follow Section A.5 and therefore are omitted here. Estimation can be done by plug-in

with an optional small sample correction.

The posterior of η(a|s) covaries with those of π−(a|s, c) and π+(a|s, c) because the latter parameters

depend partially on the ECDF of the same forced-choice units.

C−η (a|s, c, qs,X)

= Cov

(
Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy, y +

∫ ∞
y

1− F̂ (y|s, a, 1) dy

)

=
2

n1
sa · qsc

∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n1
sa · qsc

∫ Γ̂−1
a (b)

y

∫ ∞
Γ̂−1
a (b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

C+
η (a|s, c, qs,X)

= Cov

(
Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy,

y +

∫ ∞
y

1− F̂ (y|s, a, 1) dy

)

=
1

n1
sa · qsc

∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n1
sa · qsc

∫ ∞
Γ̂−1
a (1−b)

∫ ∞
y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

for any s, c 6= a ∈ A.

Thus, each draw of the sensitivity results from their posterior is generated by the following procedure:

1. Draw p ≡ [ps] ∼ Dirichlet(n), wheren ≡ [ns] =
[∑N

i=1 1{Si = 0}, · · · ,
∑N

i=1 1{Si = J − 1}
]>

.
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2. For each s ∈ A:

(a) Draw qs ≡ [qsa] ∼ Dirichlet(n0
s), where n0

s ≡ [n0
sa] =

[∑N
i=1 1{Si = s, Ai = 0, Di =

0}, · · · ,
∑N

i=1 1{Si = s, Ai = J − 1, Di = 0}
]>

;

(b) For each a and c ∈ A, draw a triplet [π−(a|s, c), π+(a|s, c), η(a|s)] from the trivariate normal

distribution defined above.

3. For a given ρ, calculate a simulated draw of [τ−ρ (a, a′|c), τ+
ρ (a, a′|c)] according to equation (9).

The sensitivity procedure for binary outcomes differs only in the last two steps:

2. (b) For each a ∈ A, draw Hsa and Gsa from the posteriors discussed in Sections 6 and A.5.

3. Calculate a simulated draw of [τ−(a, a′|c), τ+(a, a′|c)] by solving the linear programming problem

in equation (24), with the additional sensitivity constraints
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A

φy0,y1,y2,s,c1{ya∗ = 1} ≥ (Hsa∗−ρa∗c)
∑

s∈A qscps and
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A φy0,y1,y2,s,c

1{ya∗ = 1} ≤ (Hsa∗ + ρa∗c)
∑

s∈A qscps for given c and a∗ ∈ {a, a′}.

A.7 Additional Simulation Results

In this section, we present additional results from the simulations described in Section 8. First, we ex-

plore the performance of the EM-algorithm-based parametric approach proposed by Long et al. (2008)

(hereafter LLL) in a setting close to our empirical application. This necessitates extending LLL’s original

methodology, as it was developed for a binary treatment. We thus modify their parametric model to ac-

commodate a categorical treatment by modeling the treatment choice with the multinomial logit model,

as opposed to the binary logit model. (We have confirmed that our own R implementation of this exten-

sion replicates the simulation results reported by LLL in their original article almost exactly.) To make

LLL’s approach comparable to our proposed method in terms of observed information used, we set sub-

jects’ stated preferences as the covariate in their choice and outcome models (i.e., X1i = X2i = Si using

their notation). We then apply the LLL estimator to the same 500 simulated datasets as in Section 8.
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CD=0.00 CD=0.33 CD=0.67 CD=1.00
LLL 0.053 0.028 0.019 -0.020

naïve 0.002 0.011 0.023 0.038
min -0.001 -0.001 -0.001 0.000
max -0.001 -0.001 -0.001 -0.001

Table A.1: LLL bias for various CD values, holding OD at zero. Naïve and bounds biases from Sec-
tion 8.1 are reproduced here for convenience.

OD=0.00 OD=0.33 OD=0.67 OD=1.00
LLL 0.053 0.062 0.072 0.080

naïve 0.002 0.011 0.020 0.030
min -0.001 0.001 0.001 0.001
max -0.001 -0.002 -0.002 -0.001

Table A.2: LLL bias for various OD values, holding CD at zero. Naïve and bounds biases from Sec-
tion 8.2 are reproduced here for convenience.

Tables A.1 and A.2 show the results in terms of bias at the sample size of 3,000 (second row from the

top), along with the comparable results for the naïve estimator and our proposed bounds estimator (third

row and below), which are reproduced from Tables 2 and 3 in the main text. Somewhat surprisingly, and

contrary to the original findings by LLL based on a much simpler simulation setup, the LLL estimator

exhibits substantial bias even when both CD and OD are zero. This suggests that finite-sample perfor-

mance of the LLL estimator is rather poor when applied to datasets like ours, rendering it an unattractive

option for inference.

Next, we contrast the proposed Bayesian inferential approach described in Section A.5 to an alterna-

tive method based on the nonparametric bootstrap. We construct the 95% bootstrap confidence intervals

by taking the 2.5th and 97.5th percentiles of parameter estimates in 1000 bootstrap draws. For the

bounds, we take those percentiles from the lower and upper bound estimates, respectively, to construct

confidence intervals that are purported to cover the nonparametric bounds 95% of the time.

Tables A.3 and A.4 show estimated coverage rates for the 95% bootstrap confidence intervals at

various values of the CD and OD parameters. The comparable results for our proposed Bayesian intervals

can be found in Tables A.3 and A.4 in the main text. In general, we find that the coverage of the

bootstrap intervals is noticeably below that of our proposed method, and the bootstrap coverage rates are
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n CD=0.00 CD=0.33 CD=0.67 CD=1.00
500 0.944 0.930 0.895 0.891

1000 0.941 0.915 0.911 0.906
3000 0.952 0.914 0.908 0.924

10000 0.930 0.924 0.924 0.928
50000 0.936 0.940 0.940 0.942

Table A.3: Bootstrap coverage rates for various CD values, holding OD at zero.

n OD=0.00 OD=0.33 OD=0.67 OD=1.00
500 0.944 0.954 0.949 0.950

1000 0.941 0.960 0.956 0.959
3000 0.952 0.942 0.952 0.944

10000 0.930 0.952 0.950 0.958
50000 0.936 0.948 0.944 0.946

Table A.4: Bootstrap coverage rates for various OD values, holding CD at zero.

substantially below nominal at lower sample sizes and for larger values of the CD parameter.
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Sensitivity Analysis for Discussing Story with Friends (binary)

Figure A.1: Sensitivity Analysis for the ACTE of Partisan News Media (Binary Outcome). The plots
correspond to the right panel of Figure 2. See caption for Figure 3 for the explanation of graph elements.
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