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Abstract

Path data describes the steps that an actor takes to get from point A to B. It offers re-

searchers the opportunity to test theories about network navigation, including in social and

geographic networks. For example, path data can show whether individuals avoid out-group

neighborhoods in their daily walking routes, resulting in societal inefficiencies and reducing

inter-group contact. This data can also reveal how voters search social networks for political

information, which may distort the information they ultimately receive. However, the se-

quential decision-making process in path data violates the underlying assumptions of existing

models, which assume some form of conditional independence between observations. I pro-

pose a new random-path model (RPM) that explicitly captures this pathwise dependence,

develop an estimation procedure, and demonstrate its properties. The RPM builds on a

random-walk model, incorporating a realistic but difficult-to-analyze constraint to account

for the fact that actors are purposefully navigating toward a destination. I validate the model

in an analysis of the U.S. Interstate Highway planning process, where existing approaches

fail to recover a known qualitative benchmark. Finally, the RPM is used to test two com-

peting explanations of Baghdad’s recent segregation. Using smartphone-based behavioral

data from Sunni and Shia participants in a field activity, I show that a need-based model

of residential sorting—when families flee mixed neighborhoods to avoid political violence—is

insufficient to explain participants’ walking routes alone. Instead, their choices reveal that

conflict has also created significant taste-based aversion to out-groups in a city once known

for its cosmopolitanism. These results suggest that societal preferences have shifted in a way

that makes Baghdad’s eventual re-integration unlikely.
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1 Introduction

Goals are rarely accomplished in one fell swoop. Instead, actors work one step at a time, making a

series of smaller decisions that ultimately lead to the intended destination. This sequential process

forms a path. As a general phenomenon, paths are ubiquitous, and social scientists have developed

a variety of theories about them. For example, sociologists are interested in how people search

their social networks through a chain of intermediaries and referrals (Milgram, 1967; Killworth and

Bernard, 1978; Dodds, Muhamad and Watts, 2003), and development economists seek to evaluate

the impact of transportation infrastructure, such as highway and railroad routes, on long-term

growth (Fogel, 1962, 1964; Aschauer, 1989; Banerjee, Duflo and Qian, 2012). In these theories,

paths feature as both dependent and independent variables—just like any other form of data. Yet

paths are rarely measured and studied as such when evaluating path-related theories. In this,

they differ from other data types, such as event counts, where a broad consensus has emerged that

theories should be tested by collecting appropriate forms of data and using appropriate models to

analyze them (King, 1989). The gap is largely due to the absence of statistical models for path

data.

In this paper, I propose and demonstrate the properties of a new model for path outcomes.

Paths are represented as movement on a network: A forward-looking decision-maker chooses from

a limited set of options, or neighboring nodes, each opening a new and different set of possible

next steps. For example, when building a road to connect two cities, a planner must go through

an inner suburb of the first, then an adjacent outer suburb, and so on until eventually arriving

at the destination. The random-path model (RPM) allows researchers to learn about preferences

based on this movement. The intuition underlying the model is simple. If roads commonly go out

of their way to avoid mountainous regions, then the “cost” of elevation is larger than deviating

from the shortest route.

The RPM builds on the random-walk model, which assumes that each decision is independent.
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Random walks are powerful and well-studied models that can explain how long-term patterns

emerge from a series of small decisions. They have found application across a wide range of

fields, including the random collisions of atoms, foraging patterns of animals, and stock-market

fluctuations. In the random-walk model, a walker myopically takes steps based on their short-

term attractiveness, until eventually reaching the goal by sheer luck. As an example, consider

an individual navigating between diagonal corners of a 5 × 5 street grid. Under this model, the

walker has a 99.2% chance of wandering back to a previously visited intersection at some point

before arriving at the destination. While the random walk might be appropriate model of human

decision-making in some circumstances (as a case in point, this particular problem is often called

the “drunkard’s walk”), I argue that actors generally plan ahead and work more efficiently.

To better model purposeful decision-making, the RPM adds a conditioning stage before start-

ing, in which all candidate routes that contain repetitive loops are discarded. It can be shown

that this is equivalent to a forward- and backward-looking walker that navigates toward the goal

and avoids previously visited areas. In the same street-grid example, under the RPM, the walker

pushes onward to the destination rather than wandering aimlessly in circles. Moreover, under

this simple scenario, a walker following the RPM takes a shortest path—walking eight blocks,

e.g. along the diagonal—nearly three-quarters of the time. (Additional covariates can be incor-

porated to account for the walker’s sense of direction or familiarity with the area.) A model that

incorporates some form of long-term planning is better-suited for most applications in political

science.

However, this additional constraint poses a challenge in that it makes the resulting probabil-

ity mass function intractable. I demonstrate that despite this challenge, the RPM can still be

estimated. To this end, I develop and assess numerical algorithms for sampling random paths,

evaluating a simulated RPM likelihood function, and efficiently implementing Metropolis-Hastings

sampling from the posterior distribution. A permutation-based extension of the model can be used

to estimate the causal effects of path-assigned treatments.
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In the remainder of this paper, I first discuss examples of path data in political science. Sec-

tion 3 formally defines the model, outlines the estimation procedure, and contrasts the random

path model with existing approaches. Section 4 validates the RPM with a study of the U.S.

Interstate Highway System, where official priorities are known from detailed qualitative planning

documents. I show that RPM estimates correspond closely to this benchmark, whereas existing

spatial models produce substantively and statistically differing results.

Finally, section 5 provides a motivating empirical application. In Baghdad, a long history of

Sunni–Shia coexistence and integration was overturned by a wave of ethnic cleansing in 2006–

2007. The long-run effects of this conflict depend on whether recent segregation was only driven

by need-based sorting—to avoid violence (Morrison, 1993)—or whether it also led to taste-based

sorting (Schelling, 1969, 1971). While these drivers of out-group aversion often go hand-in-hand,

they have very different implications for Baghdad’s future development: If residents only fled

mixed neighborhoods to avoid ethnic violence, then game-theoretic models (Young, 1998; Zhang,

2004a,b) predict gradual post-conflict reintegration. If conflict led to newfound taste-based aver-

sion, however, ethnic attitudes can persist far beyond the end of conflict and make segregation

difficult to escape.

To test these competing hypotheses, I analyze behavioral data from a Baghdad field study by

Christia and Knox (n.d.). Participants’ movement in a treasure-hunt-type activity reveals that

taste-based aversion is a significant factor in participants’ daily movement. These results suggest

that recent conflict has shifted societal preferences in a way that makes reintegration unlikely.

Section 6 concludes with limitations and areas for future work.
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2 Literature Review

2.1 Path Data in Political Science

Political scientists have theorized about the causes and effects of paths in a variety of settings.

In this section, I offer examples that include the geographic paths of connective infrastructure,

the social paths traced by individuals as they search their social networks, and the aggregate-flow

paths of people and goods. Other path-related theories appear in economics, urban planning,

operations research, and engineering. While the measurement of path data is relatively new, it

is growing increasingly common, offering new opportunities for research but also presenting new

challenges for statistical analysis.

An illustrative example of a path in political science is the highway, which connects cities

through a series of intermediate counties. Researchers are often interested in evaluating the role

of various political factors in transportation spending, including institutions, pork-barrel spend-

ing, and ethnic patronage (e.g. Lee, 2000; Burgess et al., 2015). Other examples from connective

infrastructure include the impact of patronage in electrical grid construction (Briggs, 2012) and

governance on oil pipelines (Carmody, 2009). Researchers have increasingly recognized that stan-

dard models fail to account for the dependence between units that arises in these contexts. That

is, whether a county is connected to the highway system depends not only on whether neigh-

boring counties are also connected, as in standard spatial models, but also which neighbors are

connected.1 Given that highways are typically designed to connect major metropolitan areas, a

rural legislator’s success in securing transportation spending is perhaps as much about diverting

the course of already-planned segments as it is fabricating entirely new projects. However, exist-

ing models do not permit principled testing of hypotheses about factors shaping the trajectories

of paths. I argue that paths are a unique class of dependent variable and should be modeled

1For example, consider an east-west highway on a square grid. For county i to be connected, two conditions are
required: (1) Its neighbors to the east and west must be connected, so that i can serve as the missing link; and
(2) neighbors to the north and south cannot be connected—otherwise, the route would already be complete and i
would be superfluous.
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accordingly, much as event count outcomes are commonly modeled with Poisson regression.

Social scientists are not only interested in modeling paths as a dependent variable, but also in

evaluating the effects of path-assigned treatments. In economics, a long-standing debate revolves

around whether connective infrastructure leads to economic development (Fogel, 1962, 1964; As-

chauer, 1989; Banerjee, Duflo and Qian, 2012; Casaburi, Glennerster and Suri, 2013). More recent

work has also linked highway construction to popular support for the Nazi party (Voigtlaender

and Voth, 2014) and urban–suburban political polarization (Nall, 2013, 2015); electrification to

liberalizing attitudes in the Tennessee Valley (Caughey, 2012); and oil pipelines to local revenue

sharing (Blair, 2016). This work has generally relied on context-specific information to address

inferential challenges in these settings—for example, approximating an ideal experiment in which

several alternative highways are proposed, but only some selected for construction. I discuss a

way to take this intuition and generalize it, by modeling the path assignment process.

Beyond connective infrastructure, paths also appear widely in studies of social network search.

As a concrete example, Habyarimana et al. (2007) showed that co-ethnic networks increase “find-

ability” of strangers in their study of public goods provision. In their experiment, randomly se-

lected Ugandan “runners” were given photographs of strangers, then asked to locate them within

24 hours—which they did with startling levels of success. The ability to locate and sanction free

riders through social networks, often easier among co-ethnics, is in turn linked to public goods

provision in diverse societies (Miguel and Gugerty, 2005; Eubank, 2016). Christia, Knox and Al-

Rikabi (n.d.) examine related questions in the context of Iraq, showing that minority Sunnis adapt

to a Shia-dominated society by developing more efficient network search strategies to access public

services. Network search is also important in the spread of political information, where the search

patterns of citizens actively seeking knowledge can distort the information they ultimately receive

(Huckfeldt and Sprague, 1987, 1995). (The passive transmission of political information, like the

spread of rumors, can also be thought of as a flow path over a network (Converse, 1962; Zaller,

1989).) Finally, the formation of buyer-seller ties in imperfect markets often involves searching a
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social network for exchange partners (Kranton and Minehart, 2001).

Path outcomes are also of great interest in public policy, where they can represent aggregate

flows of, e.g., refugee migration or smuggled drugs. Potential determinants of migration routes,

such as welfare policy and border security, have been debated with increasing urgency since a

sharp increase in European migration in 2015 (U.N. High Commissioner for Refugees, 2016).

The spillover effects of policies that divert such flows is a common concern. For example, Dell

(2015) considers a game-theoretic model of path-based spillover, in which crackdowns by Mexico’s

National Action Party (PAN) force drug traffickers to reroute through nearby municipalities, and

shows that the model is consistent with rising drug arrests after PAN victories.

The random-path model allows researchers to learn about the preferences of an actor, such as

the highway planners, information-seeking citizens, and drug traffickers discussed above, based on

an observed path or collection of paths. It can test whether patronage is a significant factor in the

trajectories of highways and electrical lines—that is, whether infrastructure routes deviate from an

“optimal” route in order to visit certain areas—or whether drug traffickers tend to avoid states with

harsher penalties, such as minimum-sentencing laws. Furthermore, the model allows researchers to

simulate various quantities of interest in a statistically principled way: How many additional miles

of highway were built because of patronage? If one state cracked down on trafficking, what volume

of drug shipments would divert into its neighbors? Finally, in ongoing work, I show that RPM

can be used as a model of treatment assignment to allowing inference about the causal effects

of path-assigned treatments (Rubin, 1991). This approach also permits the study of spillover

effects (Bowers, Fredrickson and Panagopoulos, 2013; Aronow and Samii, n.d.), such as whether

highways lead to growth in nearby areas or whether they contribute to out-migration and decline,

by comparing highway towns and nearby areas to places that were as likely to be connected.
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2.2 Alternative Methods

Most analyses of paths, such as infrastructure, have used standard regression or matching methods

that ignore spatial dependence entirely (Rephann and Isserman, 1994; Chandra and Thompson,

2000; Michaels, 2008; Donaldson, forthcoming). Others allow for correlation within a cluster of

units, such as counties in a state, but neglect the fact that bordering counties on opposite sides

of a state line are also highly dependent (Baum-Snow, 2007; Baum-Snow et al., n.d.). At best,

researchers have employed spatial error or spatial autocorrelation models that assume dependence

is (1) isotropic, so that each unit is positively correlated with its circular neighborhood;2 (2)

decaying at a constant rate with distance; and (3) stationary, so that the same correlation structure

is constant the entire space (Cohen and Paul, 2004; Del Bo and Florio, 2012).

Spatial models are well-suited for analyzing a variety of phenomena, such as policy diffusion

(Elkins and Simmons, 2005). However, they are not intended for the analysis of path data, which

violate every one of the underlying assumptions outlined above. As a concrete example, consider

the naturalistic simulation in appendix B, where a road curves around a mountain range to connect

cities on opposite sides. Path data has strong positive dependence in some directions (for a town

to be connected, the road must approach it from the front and back) and negative in others (if the

road detours around one side, it will not pass through the town). Roads can easily exhibit long-

range dependence—all towns on one side of the mountain are positively correlated with each other,

and they are negatively correlated with towns on the opposite side—the road can only choose one

side, and it connects many areas on that side simultaneously. Moreover, the distribution over

possible roads is tighter in a mountain pass, where fewer viable routes exist.

Generally speaking, analyses that ignore pathwise dependence between observations lead to

results that are as much of an “exercise in self-deception” as those that ignore clustering (Cornfield,

1978). Moreover, all of the models describe above essentially treat local dependence as a nuisance.

Their output cannot be interpreted in terms of useful path-related quantities of interest—for

2Some analyses relax this assumption to allow for elliptical correlation structures.
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example, the change in road length caused by the mountain described above.

In contrast to spatial models, the RPM is a model of network formation. It starts with the

graph of all neighboring nodes, such as counties, and selects a subset of contiguous nodes and edges

to connect a starting point to an endpoint. Other families of network models that have been used

in political science include exponential random graph models (ERGMs) and latent-space models

(Cranmer et al., 2016). Broadly speaking, existing network models deal with dyadic relationships

while accounting for the contextual influence of local network structure. For example, ERGMs

have proven valuable in the study of international relations for their ability to account for the way

allies’ relationships affect whether two nations go to war (Cranmer and Desmarais, 2011). The

goal of the RPM differs from these models in that it models a purposeful attempt to connect two

nodes; it is influenced by network structure over a much longer range, is subject to more severe

constraints, and generally addresses a different class of questions.

3 Model

In this section, I briefly discuss two interpretations of random walks, which are closely related to the

random-path model. Walks are introduced as a sequence of dependent random steps. This view is

then shown to be mathematically equivalent to an alternative view in which entire walks are drawn,

all at once, from a discrete set of sequences. I exploit this equivalence to conveniently express

random-path models in the second view, then discuss the implied relationship between random-

walk models and RPMs in the first. I then outline the computational challenges in estimating

RPMs and outline a procedure to recover the posterior distribution of the random-path parameters,

given a set of observed paths. The method is placed in the context of the simulated likelihood

method and a rapidly growing literature on approximate Bayesian computation.
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3.1 Random Walks: A Review

Define a weighted, possibly directed graph G as a set of nodes (vertices) denoted V ∈ {1, · · · , N},

such as counties, and a row-stochastic edge-weight matrix E = [εi,j] = [ε>1,∗, · · · , ε>N,∗]>. For a

walker at i, εi,j represents the probability that the walker’s next step is to j; it takes on positive

values for adjacent j—those in i’s neighborhood, Ni, which is the “choice set” for a walker at

i—and zero otherwise. Self-links, or εi,i, are set to zero by convention.

A random walk, Γ ≡ (v0, · · · , vK), is defined by a starting node v0, the transition distributions

vt ∼ Categorical(εt−1,∗), and a stopping rule.3 For illustrative purposes, I assume that walks stop

upon reaching a single predesignated terminus, vK . The observed path is denoted γ = (γ0, · · · , γk),

and the specified conditions require that v0 = γ0 and vK = γk. Note that the number of steps in

the walk, K, is also a random variable, with realization k. (Alternative stopping rules, such as

after a fixed number of steps or when any of a set of nodes are found, may be more appropriate

in other applications, and the proposed distribution is easily adapted for these cases.)

The random walk is analogous to the negative binomial distribution in that it can be thought of

as either a sequence of dependent categorical random variables, as presented above, or a probability

distribution over an infinite discrete set whose elements are sequences of varying length. In either

case, given fixed endpoints, the probability of a particular realization is

Pr(Γ = γ | v0 = γ0, vK = γk) =
k−1∏
t=0

εγt,γt+1

It is straightforward to model step probabilities, εi,j, as a function of M covariates. Let X be

a N ×N × (M + 1) tensor where the m-th slice is a matrix of dyadic covariates, such as distance.

β = [β0, β1, · · · , βM ]> is a vector of coefficients, and Xmβ
m =

[∑
m βmX∗,∗,m

]
is a n × n matrix

3This defines a walk in terms of a node sequence, which leaves the intervening edges vtvt+1 implicit. An
equivalent definition is that a walk is a subgraph of G, GΓ = (VΓ, EΓ), in which VΓ ⊆ V and EΓ is a sequence of
edges, (v0v1, · · · , vK−1vK), in which all elements satisfy εvt,vt+1 > 0.

9



of linear predictors. Assume edge weights can be written as

εi,j =
exp

(
[Xmβ

m]i,j

)
∑

j′ exp
(

[Xmβm]i,j′
) ,

so that rows of E are the multinomial logistic transformation, or softmax, of rows of Xmβ
m. Fix

β0 at −∞ and let X∗,∗,0 = [1(j 6∈ Ni)], so that εi,j = 0 for j 6∈ Ni, and the probability mass

function (PMF) is

fwalk(γ |X, β) ≡ Pr(Γ = γ | v0 = γ0, vK = γk,X, β) =
k−1∏
t=0

exp
(

[Xmβ
m]γt,γt+1

)
∑

j′ exp
(

[Xmβm]γt,j′
)

The random-walk model is well-understood and has been used in the transportation literature.

Fosgerau, Frejinger and Karlstrom (2013) observe that these models allow loops, including infinite

loops, although they report that these are rare in their particular case.

3.2 Random Path Distribution as Conditional Random Walk

The random walk, while analytically tractable, is a poor model for many social phenomena because

it assumes that each step is independent. Unlike sequential decision-makers in political science,

such as highway planners, random walkers are neither forward- or backward-looking. Under typical

conditions, they are likely to revisit many nodes—as I describe in section 1, a random walker

crossing a N × N street grid will go in circles with near certainty for N ≥ 5. Moreover, this

problem cannot be fixed by incorporating covariates into the step probabilities (such as distance

or direction), because loops are a property of the entire sequence rather than any particular step.

This paper proposes an alternative, the conditional random-walk distribution (Γ | Γ ∈ P),

where P is the set of all possible paths from γ0 to γk—i.e., all walks from start to terminus that

contain no loops. Formally, P ≡ {ψ : ΩΓ, |{ψ}| = |ψ|}, where ΩΓ is the sample space of Γ and

the latter condition specifies that all nodes in path ψ are unique. Thus, P excludes all walks
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that return to a previously visited node. Given that the observed walk γ is a path, so that it

automatically satisfies γ ∈ P , the random-path PMF is found by renormalizing:

fpath(γ |X, β) ≡ fwalk(γ |X, β,Γ ∈ P)

=
Pr(Γ = γ,Γ ∈ P | v0 = γ0, vK = γk,X, β)

Pr (Γ ∈ P | v0 = γ0, vK = γk,X, β)

=
Pr(Γ = γ | v0 = γ0, vK = γk,X, β)

Pr (Γ ∈ P | v0 = γ0, vK = γk,X, β)

=

∏k−1
t=0

exp
(

[Xmβm]γt,γt+1

)
∑
j′ exp([Xmβm]γt,j′)∑

ψ∈P
∏|ψ|−1

t=0

exp
(

[Xmβm]ψt,ψt+1

)
∑
j′ exp([Xmβm]ψt,j′)

. (1)

This random-path distribution has properties that make it well-suited for modeling common

decision-making processes, such as the political science applications discussed in section 2.1. Recall

that in the view of the random walks as a sequence of random variables, at each step, the walker

is only “backward-looking” insofar as the previous step determines the current options. That is,

in a random walk, Γt 6⊥⊥ Γt−1, but (Γt | Γt−1) ⊥⊥ Γt−2. In the same view of random paths, the

walker is “fully” backward-looking in that it will tend to avoid the vicinity of all previously visited

nodes. The walker is also forward-looking in that it tends to avoid traps and other local optima

with foresight, anticipatorily moving in directions that will take it to the destination faster.

3.3 Estimation

Equation 1 suggests a likelihood-based approach for inference on the random-path model. I begin

by briefly discussing an algorithm for exactly calculating this likelihood. Because this approach

becomes intractable for moderately sized or dense graphs, I then develop an simulation-based

approximation that converges to the exact method as the number of simulations tends to infinity.

Finally, I briefly discuss computational issues for Bayesian inference on RPM models.
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3.3.1 Simulated RPM Likelihood

A natural approach for inference on random paths is to use the likelihood Lpath(β | X, γ) ≡

fpath(γ |X, β), where the full expression for the right-hand side is given in equation 1. The chief

difficulty in doing so is that the denominator of equation 1 varies with β and involves summing

over the (typically large) set of possible paths between the observed start- and endpoints, γ0 and

γk. For example, the maximum likelihood estimate of β are the parameters that maximize the

ratio of (a) the unconditional (random-walk) probability of the observed path to (b) the totaled

random-walk probabilities of every other path that could have been drawn. In appendix A.1,

I describe an exact method for doing so. This procedure uses a recursive search to explicitly

enumerate every possible path, then sums the random-walk probabilities of mutually exclusive

paths. In principle, the Fisher information matrix can also be derived in this way, with confidence

intervals calculated using the delta method.

However, in practice, explicitly enumerating and operating on all possible paths is computa-

tionally infeasible, even for moderately sized or dense graphs. For example, in complete graphs,

where every node is connected to every other, the number of possible paths is given by
∑N−2

k=0
(N−2)!
k!

.

Even in a ten-node complete graph, 109,601 paths are possible. Building on the intuition behind

the exact approach, I develop algorithm 1 to approximate the likelihood function to arbitrary

precision. Algorithm 1 is based on a common numerical approach for summations over hard-to-

enumerate domains, Monte Carlo integration. The approach developed here is analogous to the

following procedure for approximating the integral
∫ b
a
f(x) dx: Randomly sample points on the

uniform [a, b] distribution, evaluate f(x) at each point, average the results, and multiply by the

size of the sampling space (b− a).

To apply this to the RPM case, let Ψ be the uniform distribution over the set of all pos-

sible paths P . The following is a directly analogous approach for estimating the denomina-

tor of equation 1, which is equivalent to
∑

ψ∈P fwalk(ψ). Repeatedly draw ψ ∼ Ψ, evaluate

the random-walk probability for each sampled element, and average across draws to estimate
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EΨ[fwalk(Ψ)] = 1
|P|
∑

ψ∈P fwalk(ψ). Then, multiply by the total number of paths |P| to find an es-

timate of the denominator. Because the numerator is calculated exactly, the simulated likelihood

(Lee, 1992) inherits the desirable property of converging to the exact likelihood in appendix A.1

(up to a multiplicative constant) as the number of or simulations tends to infinity. This can be

seen by noting that depth-first search finds every path exactly once, and the number of times that

the uniform distribution draws each path converges to S
|P| as S grows large.

There are two complications in this procedure. The lesser complication is that we need to

know the value of |P| to correctly normalize. This is a #P-hard problem (Valiant, 1979), meaning

that it can only be solved by listing every possible path and then counting them—precisely the

computational issue that we were trying to sidestep in the first place.4 Fortunately, |P| does not

involve the RPM parameters, β, and so it can be absorbed into the normalizing constant of the

RPM likelihood function. The RPM likelihood is then given by

Lpath(β |X, γ) =

∏k−1
t=0

exp
(

[Xmβm]γt,γt+1

)
∑
j′ exp([Xmβm]γt,j′)∑

ψ∈P
∏|ψ|−1

t=0

exp
(

[Xmβm]ψt,ψt+1

)
∑
j′ exp([Xmβm]ψt,j′)

=

∏k−1
t=0

exp
(

[Xmβm]γt,γt+1

)
∑
j′ exp([Xmβm]γt,j′)

|P| · EΨ

[∏|Ψ|−1
t=0

exp
(

[Xmβm]Ψt,Ψt+1

)
∑
j′ exp([Xmβm]Ψt,j′)

]

∝

∏k−1
t=0

exp
(

[Xmβm]γt,γt+1

)
∑
j′ exp([Xmβm]γt,j′)

EΨ[Pr(Γ = Ψ | v0 = γ0, vK = γk,X, β)]
. (2)

After eliminating this constant, equation 2 could in principle be approximated by Monte-Carlo

sampling from Ψ as described above. This brings us to the second complication. Unfortunately,

Ψ cannot be sampled—there is no known algorithm for uniformly sampling paths. To deal with

this, I adapt a non-uniform distribution for importance sampling on P , the loop-erased random

walk (LERW). 5 The LERW begins with a pure random walk, then retraces its steps and removes

4Roberts and Kroese (2007) explore an approximation for large graphs, but its accuracy is unknown.
5An alternative approach for sampling non-uniformly from P is the self-avoiding walk (SAW). The SAW is a
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loops that return to previously visited nodes (the procedure is given as part of algorithm 1).

Wilson (1996) proved that the spanning tree—i.e., a subgraph that connects all nodes, such as

a maze, that contains no cycles—produced by iteratively combining LERWs will be a uniform

draw from the set of all spanning trees. In proposition 1, I use this property to construct an

importance-sampling scheme on P .

Proposition 1 (Simulated RPM Likelihood). Define the unweighted version of G, G̃, and let L

be a path-valued random variable, with distribution fLERW(ψ : G̃, v0, vK), that can be sampled by

the loop-erased random walk on G̃ from v0 to vK. The denominator of equation 2 can be rewritten

EΨ[Pr(Γ = Ψ | v0 = γ0, vK = γk,X, β)]

=
∑
ψ∈P

Pr(Γ = ψ | v0 = γ0, vK = γk,X, β) fLERW(ψ : G̃, v0, vK) w(ψ),

and its importance-sampling estimate is

ÊΨ[Pr(Γ = Ψ | v0 = γ0, vK = γk,X, β)]

=
S∑
s=1

Pr(Γ = Ls | v0 = γ0, vK = γk,X, β) w(Ls),

where S is the number of importance-sampling draws. The adjustment factor w(ψ) ∝ 1
det L(−i,−j)(G̃/ψ)

is the ratio between the target uniform distribution and the LERW distribution. The above holds

for any i and j in V . The term G̃/ψ is the iterated edge contraction of G̃ along all edges in path

ψ, L(·) is the Laplacian matrix of a graph, and M(−i,−j) is the (i, j) minor of a square matrix M .

A proof is given in Appendix A.2. Briefly, Wilson (1996) implies that the probability that

a LERW draws a particular path, ψ, will be proportional to the number of spanning trees that

random walk that sets transition probabilities to zero for previously visited nodes, as in Snake (Gremlin, 1976).
Properties of the SAW are largely unknown, so this approach is not considered. As part of their algorithm, Roberts
and Kroese (2007) attempt to estimate and correct for the bias of SAWs toward shorter paths by simulation. They
employ an ad-hoc method that increases the probability of long paths by down-weighting transition probabilities
to the final node (i.e., avoiding termination) based on the number of steps that have been taken. However, their
approach under-samples nodes that are distant from the target, convergence rates of the various correction factors
are unknown, and the resulting distribution is poorly understood.
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include ψ as a subgraph. Proposition 1 uses the deletion-contraction recurrence to exclude trees

that cannot arise under ψ, then applies Kirchoff’s matrix tree theorem to the contraction to count

the number of such spanning trees. Proposition 1 immediately suggests a simulated-likelihood

analogue of equation 2. This simulated likelihood forms the basis for statistical inference.

3.3.2 Discussion

The methodological challenges that arise in the RPM are closely related to those in fixed-effects

logistic regression model and related models. In the fixed-effect logit setting, conditioning on a

sufficient statistic induces a combinatorics problem in the denominator of the conditional like-

lihood. This problem, which also arises in censored survival data, is commonly addressed with

various analytical approximations (Breslow, 1974; Efron, 1977). In the RPM setting, the no-loop

conditioning leads to a similar problem, but the combinatorics in the denominator are sufficiently

complex that no closed-form approximations are known.

The simulated likelihood approach taken here is a response to this problem. It uses Monte

Carlo simulations to integrate over the outcome space, and thus approximate the denominator,

by computational rather than analytical methods. The procedure differs from typical applications

of the simulated likelihood method, which use Monte Carlo integration to marginalize nuisance

variables such as random coefficients (Bhat, 2001). A related approach to outcome-space integra-

tion is used in approximate Bayesian computation, when exact calculation of the likelihood is not

practical or possible (for recent developments, see Marin et al., 2012).

This simulated likelihood is computationally intensive for two reasons. First, for each of

the S sampled paths is drawn, an expensive matrix determinant must be calculated to find the

adjustment factor. Second, each time the simulated likelihood is evaluated at some point in the

parameter space, algorithm 1 loops over and operates on all S paths. (In the applications explored

here, values of S are on the order of 106 paths).

Neither the simulated likelihood nor the true likelihood function to which it converges are
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Data:
starting node γ0, teminus γk, covariates X, parameters β

unweighted graph G̃, number of simulations S

Result:
ψ1, · · · , ψs ∈ P
w1, · · · , ws, inverse importance weights

ÊΨ[Pr(Γ = Ψ | v0 = γ0, vK = γk,X, β)],
estimated denominator of random-path likelihood function (equation 2)

Algorithm ApproxPrPath(γ0, γk, X, β)
for s ∈ 1, · · · , S do

draw ψs ∼ LERW(G̃, γ0, γk)
weight by ws = 1

det L(−i,−j)(G̃/ψs)

end

estimate ÊΨ[Pr(Γ = Ψ | v0 = γ0, vK = γk,X, β)] =
1∑S

s=1 ws

∑S
s=1 ws Pr (Γ = ψs | v0 = γ0, vK = γk,X, β)

return ÊΨ[Pr(Γ = Ψ | v0 = γ0, vK = γk,X, β)]

Procedure LERW(G̃, γ0, γk)
initialize ψ = (γ0), i = γ0

while i 6= γk do
sample j uniformly from Ni
step to i = j and append to ψ

end
initialize t = 0
while t < |ψ| − 1 do

set t′ to maximum index satisfying ψt = ψt′
if t′ > t then

erase elements in loop (ψt+1, · · · , ψt′) from ψ
end
t+=1

end
return ψ

Algorithm 1: Approximating the probability that a random walk from γ0 to γk is a path, up to
the unknown multiplicative scaling factor |P|, by importance-sampled Monte Carlo integration.
The approximation converges to the exact likelihood as the number of simulations, S, approaches
infinity. The loop-erasure proceeds along an unweighted random walk, identifies points where
the walk returns to a previously visited node, then erases the second visit and all intervening
nodes.
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necessarily well-behaved, particularly when the network size is small. Thus, numerical optimiza-

tion of the likelihood (with confidence intervals by the delta method with numerical Hessian) is

inadvisable for short paths. When the parameter space is low-dimensional, the simulated like-

lihood can simply be evaluated on a fine grid. As the number of parameters increases, this

approach rapidly becomes infeasible. In appendix A.3, I develop a procedure to estimate RPM

by Metropolis–Hastings (MH) and discuss further approximations that can greatly speed compu-

tation. In appendix B, I use simulations to evaluate the proposed estimation procedure in various

scenarios. Consistency is shown to depend not only on the number of paths, but also their length

(and indirectly, network size).

4 U.S. Interstate Highways

I apply the RPM to the U.S. Interstate Highway System, often called the “greatest public works

project in history.” The interstate highways, estimated to cost over 500 billion inflation-adjusted

dollars, provided the first comprehensive national road network for national defense and economic

development. It offers an ideal empirical testing ground in that the planning process was highly

transparent and explicitly stated decision criteria are publicly available. Interstate paths are an-

alyzed with the RPM and alternative spatial models to assess whether these models accurately

recover the decision-making process. The random-path model produces estimates that are consis-

tent with planning criteria, whereas alternative spatial methods yield conflicting results.

4.1 Qualitative Benchmark

The Interstate Highway System evolved over several decades and numerous iterations. The 1921

Pershing map—an Army proposal of important routes for military logistics, including emergency

mobilization—was one of the first comprehensive drafts. The counties to connect were identi-

fied in a report by the National Interregional Highway Committee (1944), along with a detailed
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discussion of the route selection process. At this level, planners were fairly insulated from polit-

ical pressures: An independent committee devised and applied a rule-based system, using census

data, to identify counties to connect in each region. The committee was composed of professional

bureaucrats—planners, civil engineers, and administrators from the Bureau of Public Roads. Leg-

islative influence was primarily through a formula that fixed the distribution of funds among

states, rather than influencing specific routes. Thus, the technocratic priorities described in this

document represent a qualitative benchmark that can be used to test whether the RPM correctly

models the decision-making process. The locations of highways within counties, in terms of the

specific tracts of land to condemn, were proposed by the U.S. Bureau of Public Roads (1955) but

are not considered here.

The highway committee states that “the recommended interregional system conforms closely”

with military priorities, with extensive additions. The report discusses the specifics of route

selection in detail, with the vast majority of attention devoted to connecting major urban centers.

Planners started with a list of cities that had a 1940 census population over 100,000;6; between

these, “the primary purpose was to select routes... which would join the principal centers of

population and industry... by lines as direct as practicable.” Thus, the Interstate Highway System

was first and foremost designed to connect population centers, while keeping the overall system

at a manageable length—in the ultimately recommended plan, just under 34,000 miles. While it

was considered desirable to connect counties with high manufacturing capacity, planners observed

that in practice, this goal could be achieved by maximizing the urban population served.7

Rural population was also described as an important consideration, with the proposed highways

passing “en route between these hubs, through or very close to the denser clusters of population in

6Virtually cities with more than 100,000 residents were directly served, with three exceptions that were “passed
in close proximity.” The report explains that these cities could not be directly served without negatively impacting
much larger adjacent cities.

7Roughly two-thirds of variation in 1939 manufacturing can be explained by population alone. From the
committee report: “While slight differences exist in the relative importance of cities when they are measured on
the one hand by their populations and on the other by the values added by their manufactures, on the whole the
similarity of the measures is marked... It is, therefore, concluded that the recommended system closely approximates
the system of optimum extent from the standpoint of service to manufacturing industry.”
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small towns and populous rural areas.”8 Agricultural production, on the other hand, was described

as something of an afterthought, though the proposed system was shown to be adequate for the

purposes of transporting farm products.

Just as importantly, planning documents describe a number of factors that were not important

in route selection. Perhaps surprisingly, topography was an influence in “remarkably few places,”

and soil quality was not considered at all. Nor were interstates built along existing routes. Except

for a few sections in the Northeast and Detroit, existing roads generally did not meet standards

for lane width and arrangement, and “existing rights-of-way are grossly insufficient to permit such

widening.” These statements help justify the relatively simple model specifications used here.

4.2 Data

Following the National Interregional Highway Committee, I define the county as the unit of anal-

ysis. Based on National Highway Planning Network shapefiles, I convert a total of 57 two-digit

interstate highways into sequences of adjacent counties.9 I condition on the endpoints of these

highways, as well as intermediate cities with populations over 100,000.10 For example, I assume

that I-5 was built as a route to connect Seattle to Los Angeles, with mandatory stops in Portland

and Sacramento, but that planners were otherwise free to choose the intermediate steps. The

interstates are thus split into 136 highway segments with fixed endpoints, passing through an av-

erage of 11 counties each. The highway system can be represented as a network in which nodes are

highway counties and edges are dyadic highway connections. This highway network is a subgraph

8The report continues, “Indeed, the courses of the recommended routes are shown by this map to be in most
instances the inevitable selections, if service of population is to be considered important in the choice.”

9 In the Interstate Highway System numbering scheme, long-range east-west (north-south) highways are given
even (odd) two-digit codes, such as I-90 (I-95). Three-digit auxiliary highways that start with an odd number
are spurs (e.g., I-391) and those that start with an even number are circumferential highways (“ring roads,” e.g.,
I-495). Auxiliary highways are discarded.

10This is consistent with the planning process, in which routes were selected so that virtually all cities with
populations over 100,000 were directly served. For computational reasons, two additional fixed waypoints were
added—I assume that I-90 had to pass through Sioux Falls, SD and Buffalo, WY (junctions with I-29 and I-25,
respectively). This was done to break up a highway segment of I-90 that was otherwise an extreme outlier in terms
of length.
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of the overall U.S. county network (shown in figure 1), because highway counties are a subset of

all counties, and county-dyads with a direct highway connection are a subset of all geographically

adjacent counties.11

Highway construction is modeled as a collection of random paths. Edge weights for the move

from i to j are modeled by a softmax function with covariates based on planning documents:

εi,j =
exp (zi,j)∑

j′∈Ni exp (zi,j′)
,where

zi,j = βdistdisti,j + βpoppopj + βurburbj + βmilmilj + βindindj + βagpagpj

and covariates are defined as follows (census data from Haines, n.d.):

• disti,j : Minimum road distance between county seats of i and j, miles.12

• popj : 1940 log census population of county j.

• urbj,m : 1940 urban census population of county j. Discretized into 5 dummy variables with

breakpoints at 2, 10, 25, and 50 thousand, following planning documents.

• milj : Military facilities in j, as proxied by log spending from 1940–1945 reported by the

Civilian Production Administration (CPA).

• indj : Industrial capacity of county j, as proxied by CPA-reported log total value of indus-

trial facility expansions from 1940–1945.13

• agpj : 1939 log value of agricultural products sold and traded in county j.

11Two counties, A and B, are considered adjacent if (1) they share a border or (2) their county seats can be
connected by a line that barely clips a third county, C. In a hypothetical set of 10 mi. × 10 mi. counties forming
a square grid, the latter criteria allows for diagonal connections between counties. The threshold for “barely clips”
is arbitrarily defined as one-quarter of county C’s characteristic length (the square root of its area). For example,
in the square grid described above, a road can clip at most a triangular region of area 2.5 sq. mi. (out of C’s total
area of 100 sq. mi.) before it is considered an A− C −B path, rather than an A−B path.

12For approximately “adjacent” counties that do not share a border, I first identify the points at which i’s border
is closest to j’s border. The minimum road distance is then defined as the distance from i’s seat to the point on
its border, plus the minimum distance between i and j’s border, plus the distance from the point on j’s border to
its county seat.

13Results are substantively and statistically indistinguishable when using 1939 log manufacturing value added,
but this earlier data has substantial missingness in non-urban aras
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Figure 1: The graph of all adjacent counties is drawn in thin gray lines. The subgraph of adjacent
counties connected by Interstate Highways is highlighted with thicker red lines. The subgraph is
composed of paths between waypoints, plotted as blue circles.

4.3 Results

Based on observed decisions by planners as they connect major cities through a series of interme-

diate counties, the random-path model estimates the priorities of the Interstate Highway System.

For example, figure 2 shows a case in which Interstate 80 deviates from the shortest possible route

between Cheyenne, WY and Omaha, NE. While such cases appear to suggest that planners are

willing to trade off some additional distance in order to pass through small cities and military facil-

ities, visual inspection alone cannot determine whether the relationship is statistically significant,

nor assess the value placed on cities relative to military bases.

Because interstates are bidirectional but the RPM analyzes directed paths, I treat each segment

as the equally weighted combination of both directions, e.g., the northbound and southbound

parts. Parameter posterior distributions and convergence diagnostics are reported in appendix C
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Figure 2: The I-80 segment between Cheyenne, WY and Omaha, NE (solid red line) deviates from
the shortest route (dotted red line). Rather than minimizing distance, highway planners opted to
connect small cities (yellow circles) and military facilities (black crosses).

For interpretability, parameter estimates are converted to a probability scale in figure 3 according

to the following scenario: Suppose a highway comes upon a mutually exclusive choice between

two identical counties, j and j′. Holding the rest of the route fixed, the highway has an equal

probability of passing through either. If j was changed so that it had some desirable property, such

as a higher population, what would be the corresponding increase in the probability of highway

construction through it?

RPM results suggest that planners preferred more direct routes. They reveal a preference for

connecting counties with higher population, particularly when this population was concentrated

in cities. The addition of an average manufacturing facility or a one-standard-deviation increase in

agricultural production was found to be small and insignificant, whereas the addition of an average

military facility was associated with a large increase in the chances of receiving an interstate.

These model predictions agree well with the qualitative priorities outlined above (according to

the National Interregional Highway Committee, routes were to be “as direct as practicable” and

“close to the denser clusters of population,” with “close proximity of... [military and naval]

establishments to the recommended routes”).

In contrast, alternative spatial models with identical specifications (except distance between
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Figure 3: Predicted increase in probability of highway construction in one of two otherwise identical
counties, holding all else fixed. Base distance of 25 miles is roughly the median distance between
county seats connected by interstate highways. Various changes in county attributes (y-axis)
are approximately one standard deviation in the attribute, except for military and industrial
capabilities, which represent the value of an average facility. Points are posterior means; error
bars are 95% posterior credible intervals.

counties, a dyadic covariate that cannot be incorporated) produce significantly different estimates

that do not agree with documented interstate priorities. A standard probit model with state

fixed-effects and a correction for spatially correlated errors incorrectly suggests that an average

industrial facility is more important than an average military facility, by a large and statisti-

cally significant margin—a surprising and almost certainly incorrect result, given the planning

process (and the fact that the system is named the “National System of Interstate and Defense

Highways”). The spatial autoregressive probit model finds that if city size is held fixed, a one-

standard-deviation increase in total population has no substantive effect on highway construction.

This directly contradicts planning documents (from the National Interregional Highway Commit-

tee, 1944, “the recommended routes trace their courses along the country’s most populous bands

[of rural population]... the evidence of appropriate selection is marked”).

The failure of alternative spatial models is due to two reasons. First, the path structure
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of highways is a violation of the underlying assumptions of these spatial models. Second, and

more importantly, by nature they cannot account for the distance between sequential highway

counties—perhaps the single most important factor in route choice. These alternative models do

not capture how highways deviate from the shortest route to touch desirable counties. Instead,

they essentially compare highway counties to non-highway counties, ignoring the fact that many

rural areas were never viable candidates for an interstate.

5 Navigating the Streets of Baghdad

In Baghdad, the relationship between majority Shia and minority Sunni Muslims has been one

of peaceful coexistence for centuries (Tripp, 2000). This history of integration and intermarriage

stands in stark contrast to a wave of ethnic cleansing in 2006–2007 which has dramatically reshaped

the city’s ethnic landscape (Baker et al., 2006). What are the long-run effects of this civil conflict—

and the resulting counterinsurgency campaign—on Baghdad’s political geography? The prospects

for post-conflict reintegration hinge on whether these changes have been driven solely by need-

based sorting (Morrison, 1993) or whether they have also been accompanied by the emergence of

taste-based sorting (Schelling, 1969, 1971).

There is no dispute that need-based sorting—moving out of mixed neighborhoods to escape

violence—was an important factor in Baghdad’s sudden segregation. During the 2006–2007 con-

flict, sectarian militias drove many families out of their houses at gunpoint, and others were in-

timidated into moving preemptively. What is less clear is whether conflict fundamentally changed

ethnic relations in Baghdad and led to taste-based sorting. If the conflict was simply a power

struggle between armed factions, such as Ba’ath loyalists and the Mahdi Army, citizens’ prefer-

ences might remain unchanged. On the other hand, conflict could have precipitated a shift in

citizens’ ethnic attitudes. In this case, even people who were unaffected by violence would move

out of mixed-sect areas due to a newfound distaste for old neighbors.
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This question is not merely of historical interest. Out-group aversion is an important parameter

in game-theoretic models of segregation, and different values lead to very different predictions

about the future trajectory of Baghdad or other cities segregated by violence (Young, 1998; Zhang,

2004a,b). If sorting was a need-based response to conflict, then segregation is not stable: After the

conflict ends, the city will eventually return to its former integrated state. If there is a substantial

taste-based component, however, the current geographic division of Sunnis and Shia is likely to

persist far beyond the end of conflict.

Using the RPM, I analyze behavioral data from a field activity by Christia and Knox, in which

subjects participate in a “treasure hunt” in their own home neighborhoods. Results suggest that

ethnic conflict over the past decade has led to the emergence of previously nonexistent taste-

based sorting. In one scenario—a hypothetical one-kilometer walking task that can be completed

in about 12 minutes—estimates indicate that Shia will go out of their way by 34% (4 minutes)

to avoid Sunni areas, and Sunnis will go out of their way by 12% (1.5 minutes) to avoid Shia

areas. These shifting societal preferences have implications not only for reintegration, but also for

economic and political development as the Iraqi state attempts to rebuild after years of conflict.

5.1 Theory and Background

The geographic impact of conflict on Baghdad residents, shown in figure 4, is hard to overstate.

Sunni and Shia once lived side-by-side in nearly every district of the city, but formerly mixed areas

are now overwhelmingly dominated by one sect or the other. What drove the sudden segregation

in 2006–2007? Clearly, need-based sorting in response to sectarian purging was an important

factor. The effects of violence on migration are examined by Morrison (1993), who developed

a model that incorporates preferences for safety in addition to economic considerations such as

wage maximization. But did the aftershocks of this conflict also change sectarian attitudes and

lead to taste-based sorting, where citizens moved due to a newfound aversion to their out-group

neighbors? The answer to this question matters, because violence fades—recent deaths, though
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still substantial, have fallen below half the peak in late 2006 (Iraq Body Count, 2016). Ethnic

attitudes, on the other hand, can persist for years if not decades.

Figure 4: Top panels show sectarian composition of Baghdad pre- and post-purges (adapted from
International Medical Corps, 2007). Darker (lighter) districts have a higher proportion of Sunni
(Shia). Bottom panels show the sectarian diversity of districts; denser hatch marks indicate less
diverse areas. As a result of local sectarian cleansing, areas that were previously mixed with a
Sunni majority (dark gray, slight hatching) tend to become all-Sunni (black, dense hatching), and
those that were previously mixed with a Shia majority (light gray, slight hatching) become all-Shia
(white, dense hatching).

The daily lives of Baghdadis can help shed light on these questions. In terms of daily move-

ment, need-based sorting suggests that as citizens navigate their surroundings, their decisions

are driven primarily by a desire to survive, earn a living, and procure food. Citizens will gener-

ally act efficiently, taking direct routes when walking, except when facing the threat of violence.

If Baghdad’s segregation is predominantly a need-based response to this violence, then we may

expect gradual desegregation after conflict ends: Citizens will stop avoiding out-group areas as

they become safer, and families will move back into former homes or sort into new neighborhoods

(Tiebout, 1956), with the city eventually shuffling back to an integrated state. Although the claim
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may seem implausible in the current climate, integration has proven to be surprisingly robust in

the past. Baghdad did not segregate in response to Shia and Kurdish uprisings in 1991 or the

brutal suppression that followed, even after a major uptick in sectarian tensions. To the extent

that increased contact can slowly reduce ethnic animosity in post-conflict settings (Samii, 2013;

Mironova and Whitt, 2014; Hartman and Morse, n.d.), this scenario suggests the possibility of

reconciliation.

Taste-based sorting, on the other hand, implies that citizens will pay costs to avoid the dis-

comfort of out-group contact even when there is no threat to safety or economic rationale. For

example, it predicts that they will walk far out of their way to avoid out-group areas. If true,

this would be a new development in Baghdad’s history of cosmopolitanism. Even after the fall

of Saddam Hussein’s dictatorship in 2003, when restrictions on movement were abolished, there

was little to no change in Baghdad’s ethnic composition—Sunni and Shia continued to live in

close proximity. After the 2006–2007 purges, however, there are some reasons to suspect that

this may be changing. For one, institutional changes have increasingly elevated the prominence

of sectarian identity. Moreover, the counterinsurgency strategy of coalition forces has been one

of divided political geography.14 Coalition-built walls and armed checkpoints intended to protect

single-sect neighborhoods have been criticized for “hardening the separation of Sunnis and Shias,”

with effects that could persist long after their ongoing dismantlement (Damluji, 2010). Research

starting from Schelling (1969, 1971) shows that these conditions can lead to a rapid “tipping

point,” beyond which segregation is hard to escape. If political violence has contributed to or

been accompanied by the rise of taste-based sorting, these agent-based and game-theoretic results

suggest that society is locked in a long-term segregated state (Young, 1998; Zhang, 2004a,b).

Empirically testing these competing hypotheses is a difficult task. Surveys offer one proxy of

sectarianism but are often subject to social desirability bias. For example, in a separate survey of

religious Shia pilgrims, Christia, Dekeyser and Knox (n.d.) show that pilgrims claim to support

14As an example, the well-trafficked Bridge of the Imams, which served as a point of contact between Sunni
Adhamiya and Shia Kadhimiya, was barricaded for years to stop armed conflict between the neighborhoods.
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Sunni–Shia interaction but still overwhelmingly favor co-ethnic neighbors in a conjoint experiment

(Hainmueller, Hopkins and Yamamoto, 2014).15 While indirect survey methods can accurately

measure sensitive attitudes and even certain kinds of past behavior, such as sensitive vote choices

(Rosenfeld, Imai and Shapiro, 2016), they are unlikely to perform well in this particular context.

This is because predictions about re-integration hinge on future behavior. Indirect methods that

tap into sectarian attitudes do not directly address this question, since not all biased individuals

will express their attitudes through costly and publicly visible behavior; moreover, survey questions

that directly ask about future behavior in hypothetical scenarios are notoriously unreliable even

for non-sensitive questions (Rogers and Aida, 2013).

Instead, I draw on behavioral data from Christia and Knox (n.d.) that isolates the taste-

based channel through a field activity. We assign matched Sunni and Shia residents to a treasure

hunt through mixed-sect areas in their home districts. By assigning participants to find the same

target locations, we sidestep a fundamental problem in observational behavioral data: If people

live in neighborhoods where all basic needs are met, it might appear that they avoid surrounding

areas—including those populated by out-groups—but this would not indicate an unwillingness to

move to those areas after violence dies down. In our field study, locations are carefully selected,

with input from a mixed-sect team of local advisors and officials intimately familiar with the area,

to eliminate any reasonable concerns that participants might have about their personal safety.

This avoids a second confounder of taste-based preferences in observational data—that the threat

of violence (generally unobservable, unless local knowledge is available) may be associated with

out-group areas.

15Among these religious respondents, the only trait less desirable than Sunni faith was alcoholism, which is seen
as a serious moral failing in Iraq.
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5.2 Sample and Design

To test these models of sorting, we recruited a group of University of Baghdad students from

mixed-sect districts to participate in a field navigation activity—a treasure hunt. These recruits

are not representative of Baghdad as a whole. Instead, they represent a subpopulation in which

taste-based avoidance is “least likely” to be found (Eckstein, 1975; Gerring, 2007). If taste-based

aversion exists even among well-educated students who attend a mixed-sect university and live in

low-conflict, diverse areas, we may safely conclude that it is a widespread phenomenon.

We advertised around campus for students living in two districts, Ghazaliya and Jihad, chosen

for their sectarian diversity and security (shown in figure 5). While both districts are mixed-sect,

their sectarian landscapes differ in important ways—Ghazaliya tilts toward Sunnis and Jihad has

a larger Shia population, though both districts contain substantial numbers of each sects. Central

Ghazaliya has neighborhoods in which Sunni and Shia live side-by-side, but Sunnis (Shia) tend

to spend their time on commercial streets in the Sunni-dominated (Shia-dominated) areas to the

south (north). In contrast, neighborhoods in Jihad tend to be single-sect, but both groups frequent

markets and cafes on the same major thoroughfares.

All potential recruits provided basic demographic information in an initial meeting, and 120

Sunni and Shia participants were chosen so that groups were comparable in terms of on gender,

district, and household income sufficiency. The average participant was 21 years old. Our gender

balance was skewed towards male participants (two-thirds), and 55% of participants reported that

household income was sufficient to cover costs. By design, there were no significant differences

between sects (see table 1).

The field navigation activity was embedded in a broader week-long smartphone study in which

participants consented to our collection of behavioral data on social networks, traditional and

social media consumption, and location. To incentivize participation, subjects were given a recent-

model Android smartphone to use with their own SIM card for the duration of the study. They

received a free one-month credit (covering the study period and three additional weeks) for free
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data, domestic calling and text messaging. In addition, subjects could earn up to 15,000 IQD in

phone credit for completing the treasure hunt (about 13 USD, c.f. laborer day wages of 7–30 USD

depending on skill, or civil service monthly wages of 500 USD). This was a substantial amount for

participants and was seen as highly motivating. Smaller amounts of phone credit were offered for

other, shorter experimental tasks. After the end of the study, over half of the participants won a

contest that allowed them to keep their phone.

Figure 5: Left panel indicates location of Jihad and Ghazaliya in Baghdad. Center panel shows
the treasure hunt area in Jihad, with targets (black ×) and Sunni (dark red) and Shia (light blue)
residental areas. Neutral commercial streets and or mixed residential areas are not marked. Most
Jihad participants walked between the western, northern, and southern targets in that order. The
right panel shows the Ghazaliya playing field. Most Shia participants walked from the northern
target to the western one, then finished at one of two southern targets; most Sunnis did the route
in reverse order.

In each district, we chose centrally located targets that were near to both Sunni- and Shia-

dominated areas. These were well-trafficked locations, such as markets, bus stations, schools, and

mosques. Locations were selected from a set of options that local advisors of both sects agreed

would eliminate reasonable concerns about security. The vicinity of each treasure hunt was an

area visited by people of both sects at least occasionally. Besides avoiding harm to participants,

this also helped ensure that differences in walking routes were due to taste-based aversion, rather

than need-based concerns about safety.

Each participant was assigned to a supervisor who provided treasure-hunt directions via an
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instant messaging app. Supervisors were instructed to initially provide a start location, but no

further information. After a participant arrived and verified their location with a “selfie”, they

would receive the next location. A total of two additional locations were assigned, so that the

shortest possible route would be about three kilometers long (30 minutes) and pass through

residential neighborhoods of both sects. The resulting route consists of two paths: from start

to midpoint, and from midpoint to endpoint. These locations are shown in figure 5, along with

nearby sectarian neighborhoods.

In a follow-up survey, walkers reported their familiarity with the area and whether they stopped

to ask for directions in out-group areas, among other questions. To supplement our phone-based

location data collection, walkers also self-reported their routes by drawing on a map of the treasure

hunt area.

5.3 Nonresponse, Compliance, and Attrition

We gathered a total of 102 paths from 55 unique participants, containing an average of 21.1 corre-

lated decisions per path.16 Nonresponse was high, in large part due to extremely low participation

by women (30 percentage points lower than men, p = 0.01). This pattern was predictable, given lo-

cal gender norms. We were aware that treasure-hunt nonresponse would be higher among women,

but chose to keep both genders in the study so that they would not be excluded from social media

and other experimental modules. Other observable characteristics—sect, home district, age, or

income sufficiency—are uncorrelated with nonresponse (participation and completion rates are

given in table 2). Based on conversations with supervisors, subjects’ participation in the treasure

hunt appears to be largely driven by whether someone was willing to exercise for 30–60 minutes.

However, we cannot rule out the possibility that subjects who are more averse to out-groups are

16Five of these paths are instances where the participant returned to the starting point (thus adding a third leg)
or revisited the treasure-hunt area at some point over the weekend and happened to walk a different route between
the same locations. The latter is unsurprising since our locations are commonly visited by locals. I include these
in the analysis because they provide additional information about walking patterns.
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also less likely to participate.17

Compliance with the task protocol was imperfect. A handful of early participants were ac-

cidentally informed of all targets at once, allowing them to walk the route in a different order

than intended. In Ghazaliya, other participants visited a different grocery store than originally

intended, due to ambiguous instructions. I address these deviations by assuming that they are

independent of out-group aversion, then conditioning on the start- and endpoints of each segment.

If participants deliberately choose one store to avoid certain areas, the violation of this assumption

will bias estimates toward zero.18 Participants were free to withdraw at any time, and 13 failed to

complete the treasure hunt despite succeeding in the first leg. This attrition was distributed evenly

by participant’s sect or home area. Anecdotally, it seemed to occur when participants learned that

their next target was in an out-group area. This suggests that more-averse participants are more

likely to withdraw, which will bias estimates toward zero. There is some evidence that lower-

income participants have a lower attrition rate (p = 0.085), which could be due to the financial

incentive for completion. In general, however, reactions to the task were quite positive. Typical

responses in the debrief survey conveyed excitement (“an enjoyable new experience”, “I felt ad-

venturous”, “I liked exploring”) or discussions of the physical exertion (“tiring but entertaining”,

“good for health”, “healthy exercise”).

17 One way this might happen is if highly averse people are also less mobile or active, perhaps due to fear. It
might also arise if participants were aware of the sectarian nature of the task before starting, although steps were
taken to prevent this. Walkers were asked not to discuss the task with other subjects, and they were unaware that
all participants were assigned an identical set of targets in a neighborhood. In addition, in open-ended responses
from debrief surveys, we saw no indication that subjects realized the treasure hunt was intended to send them to
out-group areas. However, subjects were allowed to complete the treasure hunt at any time over a two-day period,
and we cannot rule out the possibility that later participants might be aware that some targets are located in
out-group areas.

18If noncompliance is associated with higher levels of out-group aversion—for example, if more-averse subjects
walk in the wrong order because it allows them to avoid out-group neighborhoods more easily—then conditioning
on this decision will result in attenuation bias in estimates of out-group aversion.
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Sunni mean Shia mean p-value
Ghazaliya 0.72 0.62 0.36

Jihad 0.28 0.38 0.36
Age 20.9 21.3 0.21

Male 0.71 0.60 0.30
Income sufficient 0.57 0.53 0.87

N 62 58

Table 1: Summary statistics for Sunni and Shia subjects, with p-values from t-test and chi-squared
tests for continuous and binary variables, respectively.

Participated p-value Completed p-value
in activity of difference both legs of difference

Sunni 0.48 }
0.78

0.80 }
0.43

Shia 0.43 0.72
Female 0.27 }

0.00
0.91 }

0.36
Male 0.56 0.73

Ghazaliya 0.51 }
0.15

0.76 }
0.36

Jihad 0.36 0.79
Income sufficient 0.52 }

0.38
0.83 }

0.08
Income insufficient 0.41 0.65

Table 2: First and second columns describe response rates by subjects in various subgroups, with
p-values for the difference based on a multivariate probit regression. Third and fourth columns
describe completion (non-attrition) rates among subjects who started the treasure hunt.

5.4 Data

Christia and Knox wrote a custom Android app to record the location of participants at one-

minute intervals, as well as the accuracy of the location estimate. Because this app was active for

the entire week-long study, we used a mix of GPS- and Wi-Fi-based measurement to compromise

between accuracy and power consumption. GPS estimates are typically higher quality, with an

accuracy within 10 meters in outdoor areas, but we find that Wi-Fi based location is generally

sufficient for our purposes (often on the order of 10 to 100 meters) and that the far lower power

requirements of Wi-Fi counterbalances its lower accuracy for long-term tracking. Walking routes

are constructed from location data as shown in figure 6. When smartphone location data is

unavailable due to technical issues, I use self-reported routes that participants drew on a map
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during debrief.19

Figure 6: Example of smartphone measurement of walking route. Blue points represent estimated
locations. A thin circle is drawn around each point, with a radius corresponding to the estimated
accuracy. A path that aligns these points with the street network is manually fit to the location
data.

I model treasure-hunt routes as random paths on a street network (modified from Open-

StreetMap, 2016), where nodes are intersections and edges are street segments. Covariates are

indexed as follows: i denotes the current node (the start of a step); j is the node to which the

walker is moving (end of step); l represents a leg of the treasure hunt (e.g., from the mosque to the

school); and k denotes an individual. Edgewise covariates that describe each street segment are

coded based on satellite imagery and input from our mixed-sect team of local advisors who were

familiar with the area.20 Additional variables are taken from the debrief survey. These covariates

are given below.

• disti,j : Length of street segment (1 = 100 meters).

19When both sources are available, they are generally consistent.
20Coders were given printed maps of the area, which they annotated by drawing borders around single-sect resi-

dential areas. Coders provided additional information about these areas, such as their safety level and professional
composition. Major thoroughfares were traced and described, and major landmarks such as schools were marked.
Annotated maps were then manually aligned and digitized.
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• directi,j,l : Directness of approach, or how much closer the i → j step brings a walker to

the endpoint of leg l (in units of 100 meters).

• enclosedi,j : Indicator for narrow enclosed streets in densely built residential areas. Coded

from satellite imagery.

• thoroughfarei,j : If street is a major thoroughfare, e.g. a major commercial avenue. Coded

from local knowledge and satellite imagery.

• sunni walkerk and shia walkerk : Participant sect (binary).

• familiark,l : In debrief survey, whether participant indicated that they were familiar with

the endpoint of leg l (binary).

• outgroupi,j,k : Whether street passes through an area dominated by out-group residents

(binary). Boundaries are based on local team’s knowledge of neighborhoods.

• safetyk : In debrief survey, whether participant indicated that safety was a factor in their

route choice (binary).

• familiark,l : In debrief survey, whether participant indicated that they were familiar with

the endpoint of leg l (binary).

Examples of thoroughfares and enclosed neighborhoods are given in figure 7. Street networks are

shown in figure 8 with these geographic covariates.

Figure 7: Annotated satellite imagery in Jihad, near starting point. Intersections are marked with
dots, with lines depicting the connecting streets. Major thoroughfares (thick lines) cross near a
bus station, at lower left. Streets that are fully enclosed by residential areas are drawn with dotted
lines.
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Figure 8: Street network in Jihad (left) and Ghazaliya (right). Targets are marked with a black ×.
Sunni- and Shia-dominated residential areas are highlighted in dark red and light blue, respectively
(neutral or mixed regions are left white). Major thoroughfares are indicated with solid thick lines,
“open” streets in residential areas (e.g., bordering a park) are in solid thin lines, and “enclosed”
streets in densely built residential areas are drawn in dotted thin lines.

5.5 Model and Results

I first describe the preferred model specification and describe the results from this model. I then

test alternative explanations and robustness with other specifications. Estimates and 95% credible

intervals for all models are given in figure 9. Finally, to interpret these results, I describe how the

sectarian landscape affects Baghdadis’ route choices in several simple but realistic scenarios.

5.5.1 Baseline Specification and Results

In the baseline specification, edge weights are modeled with the softmax function,

εi,j,k,l =
exp (zi,j,k,l)∑

j′∈Ni exp (zi,j′,k,l)
,where

zi,j,k,l = βdistdisti,j + βdirectdirecti,j,l + βenclosedenclosedi,j + βthoroughfarethoroughfarei,j +
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βSunniOGsunni walkerk · outgroupi,j,k + βShiaOGshia walkerk · outgroupi,j,k.

Note that the base terms for sunni walker and shia walker are omitted, because their co-

efficients are statistically unidentified. (From the perspective of a walker standing at any node

i, all step options would have an identical constant added to the linear predictor, C; this can be

rewritten as a multiplicative constant eC on both the numerator and denominator, then canceled.)

Three MCMC chains were run with 10,000 iterations per chain; convergence diagnostics are shown

in appendix D.

Results from the baseline model show that minority Sunnis prefer to avoid entering out-group

(Shia) areas. For Sunni walkers, the coefficient on “enter out-group area” is negative and sta-

tistically significant, indicating that these streets are less likely to be selected. However, Sunni

aversion is relatively small compared to Shia aversion: Members of the Shia majority are sig-

nificantly more reluctant to enter out-group (Sunni) areas. These results show that even after

eliminating need-based reasons to avoid out-group areas, Baghdadis still exhibit sectarian taste-

based aversion. Moreover, taste-based aversion is significant even among what is perhaps the

best-integrated subpopulation in Baghdad, suggesting that it is likely stronger among the rest of

society.

Other estimates are generally intuitive. Participants prefer shorter routes (negative coefficient

on distance), avoid dense residential developments, and prefer to walk on major thoroughfares.

A null result was found for the directness of route. This may be because directness and distance

essentially measure the same concept—a walker who takes the shortest route to a destination is

also moving in the correct direction—but in principle, including both terms leads to a more flexible

specification because walkers may respond to long steps differently under certain circumstances,

e.g. when they overshoot the destination. Findings for these covariates correspond well with

anecdotal evidence from participants, who reported that thoroughfares such as commercial streets

were “exciting,” with more activity and shops, and that they “had no reason” to cross through
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residential areas where they “did not belong.” Coefficient estimates for the basic specification are

interpreted in section 5.5.2, and alternative specifications are discussed in section 5.5.3.

Figure 9: Results from all model specifications. Points are posterior means; error bars are 95%
posterior credible intervals. Distance is measured in units of 100 meters.

5.5.2 Interpreting Results

Coefficient estimates in figure 9 can be interpreted relative to each other. For example, the negative

coefficient on distance is roughly the same size as the positive coefficient on thoroughfare, so

the “cost” of walking 100 additional meters could be offset by the “benefit” of staying on a major

thoroughfare. However, this sort of interpretation paints an incomplete picture of the iterative

decision-making process that RPM is designed to model.
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Instead, consider a hypothetical task in which a walker must decide whether or not to cross

through an out-group area to get to a destination that is one kilometer away. Figure 10 presents

two versions of this task. In the first scenario, both routes are equal in length. The corresponding

estimates in the lower panel (leftmost error bars) show that both Sunni and Shia are significantly

more likely to avoid the out-group route when it is costless (no additional distance required).

Sunni will cross through Shia territory 31% of the time (significantly less than the 50% chance if

sect were irrelevant), and Shia will choose to cross through Sunni areas only 9% of the time. In

the second scenario, the out-group route is shorter, and the alternative is twice as long. In this

case, the rightmost error bars show that both Sunni and Shia would almost certainly cut through

out-group areas to save a kilometer of additional walking, as in the second scenario. Estimates

in the middle show how these decisions change as the distance tradeoff shifts between these two

extremes: Sunni become exactly indifferent between the route options when out-group avoidance

“costs” 120 meters, or roughly a one-eighth increase in walking time (95% credible interval [10m,

240m]).21 Shia are more reluctant, becoming indifferent at 340 meters—about a one-third increase

in walking time ([240m, 460m]).

Figure 11 demonstrates the estimated behavior of participants in more complex scenarios,

when many options are available, by simulating 1000 walking routes using point estimates of the

RPM parameters. These plots show that in aggregate, members of the Sunni minority will tend

to deflect slightly away from the most direct route to avoid Shia areas, but many individuals are

willing to pass through. In contrast, Shia walkers stay just outside the border of the Sunni area,

with almost no individuals cutting across. Members of both sects will go far out of their way to

use a major thoroughfare, instead of walking through residential areas.

These results illustrate a strength of the RPM—that they illuminate how changes in short-term

incentives can have broader implications for long-term behavior. Unlike existing alternatives, it is

explicitly designed to model the path formation process. Thus, researchers can use the model as a

21For added distances in this range, the route choice probability is not significantly distinguishable from 0.5 at
the 95% credible level.
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(scenario 1) (scenario 2)

Figure 10: Top panels depict scenarios in which a walker must choose between two potential
routes. A − B − D passes through an out-group area, while A − C − D does not. In scenario
1, these routes are of equal length, so there is no incentive to pass through the out-group area.
The corresponding estimates (leftmost error bars) show that under these conditions, both Sunni
and Shia significantly avoid the out-group route. In scenario 2, A − C − D is twice as long as
A−B −D, so walking through the out-group area saves one kilometer. The rightmost error bars
show that this provides a sufficient incentive for both Sunni and Shia to overcome their aversion.
Estimates in the middle show results for various intermediate scenarios between these extremes.
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(a)

(b)

(c)

(d)

Figure 11: Estimated RPM distribution of walking routes in various scenarios. Each column
depicts a hypothetical scenario (upper panel) and 1000 simulated walking routes (lower panel),
using point estimates of RPM parameters from Baghdad data. In scenario (a), a walker crosses
from bottom to top in a 15× 15 square lattice; in the lower panel, thicker edges represent streets
that are more likely to be used. In scenario (b), the walker is Sunni and the light blue region is
Shia dominated. In scenario (c), the walker is Shia and the dark red region is Sunni dominated.
In scenario (d), a vertical line is a major thoroughfare and all other dotted lines represent enclosed
residential areas.



tool to examine counterfactual quantities of interest, both by manipulating the walker’s preferences

(How much more efficient would people be if their aversion could be eliminated?) or altering the

network context (How would the same person navigate a different neighborhood? How can urban

planners design cities to encourage inter-group contact despite residents’ preferences?).

5.5.3 Eliminating Alternative Explanations

In this section, I discuss alternative explanations for these findings and rule them out with addi-

tional model specifications. These alternative explanations are ruled out and results are shown to

be robust.

One potential concern about the treasure hunt format is that participants might move differ-

ently in areas that they know better. If they happen to be more familiar with in-group areas,

the difference might distort the estimate of out-group aversion. To address this issue, I add an

interaction between familiarity with the target (as reported by participants in a debrief) and

direction toward that target.22 The basic idea is that people who know the location of their

destination are more likely to walk directly toward it. The second panel of figure 9 shows results

from this alternative specification. The estimate on this interaction is positive, as expected, but

small and insignificant. Other results remain unchanged. Thus, there is no evidence that familiar

subjects take more direct routes, and familiarity is not driving the other results. One possible

explanation, discussed in section 5.5.4, is that people who are unfamiliar with the target are more

likely to ask for directions.

I also consider the possibility that our design did not fully address participants’ concerns about

safety. In debrief surveys, 16% of participants said that safety was a consideration in their walking

routes, despite efforts to choose a safe playing field. If participants avoided out-group areas due to

a perceived chance of violence, then their walking patterns would not necessarily indicate taste-

based aversion. To test whether this is the case, I interact safety concerns with an indicator

22The base term, familiarity with the endpoint of a treasure-hunt leg, again drops out of the model because
it is constant for all edges in a leg.
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for out-group areas (sunni walker · shia area + shia walker · sunni area). The third panel of

figure 9 shows that, as expected, safety-conscious individuals are much less likely to enter out-

group areas (p = 0.074). However, results among non-safety-conscious participants are broadly

similar: Shia remain highly and significantly averse to Sunni areas, and Sunni are slightly averse

to Shia areas (but statistical significance for Sunnis drops to p = 0.146).

Finally, I examine whether results change when considering the distance walked through out-

group territory, rather than a binary indicator for merely entering it. In the fourth panel of figure 9,

two estimates are reported for Sunni walkers—the “baseline” aversion, or the initial discomfort of

setting foot into a Shia area, and the “marginal” aversion, or the additional discomfort of each

additional 100 meters in Shia territory. The first is insignificant, but estimates show that Sunnis

are increasingly reluctant to walk through Shia areas when the distance grows longer. When the

two are added together to represent the total discomfort of walking 100 meters across Shia land (a

typical distance between intersections), the resulting aversion is comparable to previous estimates

and significant at the p = 0.060 level. For Shia walkers, both baseline and marginal aversion are

significant and in the expected direction.

5.5.4 Discussion

These results strongly suggest that the segregation caused by sectarian conflict is likely to persist

beyond the end of this conflict. Aversion is significant even among young and well-educated par-

ticipants who were primed to explore unfamiliar terrain by the treasure-hunt nature of the task.23

Among the general population, and during daily life, reluctance to enter out-group-dominated ar-

eas is likely to be stronger. It almost certainly translates to an unwillingness to live in these areas.

This alone is a sufficient condition for persistent segregation, even if people are still comfortable

in mixed neighborhoods (Young, 1998, among others). The intuition behind this literature on

“tipping-point” segregation is that when an equally mixed community begins tilting in one di-

23In open-ended debrief responses, participants wrote, e.g., “entered new areas”, “I saw new things”, “it was fun
to meet new friends.”
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rection due to random migration, members of the smaller group will start to flee with increasing

urgency. Moreover, segregation tends to be a one-way street, because individuals do not want to

be the first to move back into an out-group community.

Heterogeneity in out-group aversion must be interpreted with care. Sectarian identities are

not readily manipulable, and their “effects” are arguably undefined (Pearl, 2000; Woodward,

2003). Moreover, our Sunni and Shia participants are not a representative sample of Baghdad

residents, and while they are comparable on observable variables, it is possible that unobserved

individual- or neighborhood-level variables (e.g., subjects’ past exposure to violence or the hostility

of neighborhood residents) may be driving this heterogeneity. With these issues in mind, it is

interesting to note that Shia participants were more uncomfortable in Sunni areas than vice versa,

even though Shia groups have been in power for over a decade. More efficient behavior by Sunnis

may reflect a necessary adaptation in a Shia-dominated society. Adaptation would accord with

findings from Christia, Knox and Al-Rikabi (n.d.) in a separate study of young Baghdad cafe-

goers, where Sunnis are shown to have developed more efficient network strategies for accessing

public services: There, among other differences, Sunni were found to be more willing to seek

Shia assistance when necessary.24 Strong aversion among Shia is particularly troubling given

their majority status and political power—if Shia are resistant to re-integration, it is unlikely

to succeed. Zhang (2004a) develops a model showing that segregation remains stable even with

one-sided aversion. This is because one group is willing to pay a premium for housing to avoid

the other, and the non-averse group moves away in response to price incentives.

Out-group aversion has implications that extend beyond segregation, particularly given Shia

control over a wide range of government resources. It also reduces the chances that gradual

contact will lead to improved relations. By shaping the way that people roam around their own

neighborhoods, aversion in walking routes may also lead to fewer interactions with out-group

24Beyond geographic movement and access to public services, we also examine how information is disseminated
in sectarian networks in ongoing work. A hypothesis of particular interest is whether Sunnis transmit information
more efficiently among themselves, and if so, whether this is because of the tighter-knit structure of Sunni social
networks or a behavioral adaptation.
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members. In the debrief survey, participants reported whether they asked for directions in each

leg. The only significant predictor of “asked for directions” was whether the participant was

familiar with their target. In particular, those walking through out-group areas were no less likely

to stop and interact with locals—if anything, they were slightly more likely to ask for directions.

One possible interpretation is that people are averse to the out-group as a whole, but they are

still willing to interact with individual members when required, e.g. at university. If this is the

case, walking patterns are reducing the chances for positive contact. However, no data is available

on the sect of the person approached, and these results may also be confounded by individual

heterogeneity.

6 Future Directions

In this paper, I describe a type of data that is common but underutilized in political science—path

data. I show that while dependence between observations presents a statistical challenge, it does

not prevent inference on factors shaping the trajectories of paths. The proposed random-path

model allows social scientists to assess a wide range of previously untestable hypotheses.

However, much work remains to be done. An R package for random-path models is under

development and will provide software tools for constructing and cleaning path data, estimating

models in a familiar interface, conducting model diagnostics, and visualizing results. In future

work, I plan to adapt common statistical procedures for the RPM case. This includes an approach

to model selection using likelihood-based cross-validation (van der Laan, Dudoit and Keles, 2004)

and sensitivity analyses to test robustness to omitted variables.

Finally, the RPM can be extended to estimate the effects of path-assigned treatments. In

ongoing work, I use a model of the assignment process (Rubin, 1991) to simulate a distribution of

possible treatment assignments. In the highway case, these can be thought of as proposed highway

routes, among which one route is ultimately selected for construction. The resulting distribution
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over paths is well-suited for incorporation into Bayesian multilevel models or for drawing causal

inferences. For example, this approach allows testing of sharp hypotheses of treatment effects in

the Fisherian framework (Rosenbaum, 2002), without the need for untenable assumptions about

spatial dependence in the outcome variable. Following Bowers, Fredrickson and Panagopoulos

(2013), models of treatment assignment can also be used to evaluate hypotheses about interference

between units—a particularly important question in connective infrastructure, where highways can

either generate spillover growth in adjacent, unconnected communities or lead to out-migration

and decline.
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A Appendix

A.1 Exact Enumeration of Paths

Data:
starting node γ0, terminus γk, covariates X, parameters β

Result:
P ≡ {ψ : ΩΓ, |{ψ} = |ψ|}, set of all paths from γ0 to γk
Pr (Γ ∈ P | v0 = γ0, vK = γk,X, β), probability that a random walk is a path

Algorithm PrPath(γ0, γk, t = |γ|, X, β)
initialize ψ = (γ0), t = |γ| = 1, P = {}
populate P by recursiveDFS(γ, t, Nγt−1)

initialize Pr (Γ ∈ P | v0 = γ0, vK = γk,X, β) = 0
for ψ ∈ P do

Pr (Γ ∈ P | v0 = γ0, vK = γk,X, β) += Pr(Γ = ψ | v0 = γ0, vK = γk,X, β)
end
return Pr (Γ ∈ P | v0 = γ0, vK = γk,X, β)

Procedure recursiveDFS(ψ, t = |ψ|, Nψt−1)

for j ∈ Nγt−1 do
if j = γk then

append j to ψ
path to terminus found; append ψ to P

else if j ∈ ψ then
j already visited; proceed to next neighbor

else
append j to ψ
continue search by recursiveDFS(ψ, t+ 1, Nj)

end

end
pop ψt from ψ

Algorithm 2: Calculating the probability that a random walk from γ0 to γk is a path, using
depth-first search (DFS) to exhaustively enumerate the set of all paths, P . DFS starts at γ0

and visits each neighbor in turn, expanding recursively as far as possible until the terminus γk
is found or no new neighbors are available. The probability that a random walk is in P is then
calculated by summing the probabilities of mutually exclusive events.
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A.2 Proof of Proposition 1

This appendix is structured as follows. After introducing the necessary notation, I discuss some

properties of the loop-erased random walk. I then outline a procedure that will be used in the

proof. Finally, the proof is presented.

A.2.1 Notation

Where the notation in this appendix differs from the simplified exposition in the main text, a note

is made.

Let G̃ = (V, Ẽ) be an undirected, unweighted graph, where Ẽ is set of edges (versus an edge-

weight matrix in main text). The path ψ = (Vψ, Eψ) is a connected subgraph of G̃ that contains

no loops or branches (versus a node sequence in main text, where intervening edges were left

implicit).

A subgraph of G̃ is a spanning tree if (i) it contains all vertices V , and (ii) every pair of vertices

in V is connected by a single unique path on the subgraph. Denote the set of all spanning trees

on G̃ as T , and let G̃τ(G) be the number of such trees. The path ψ is “on” a particular spanning

tree T = (V,ET ) if it is a subgraph of T ; this holds if Eψ ⊆ ET , since necessarily Vψ ⊆ V .

A.2.2 LERW Properties

Wilson’s algorithm (Wilson, 1996) takes as input the graph G̃ and some ordering of its nodes

U = (u1, · · · , uN), then returns a random sample from the set of possible spanning trees, T . In

brief, the algorithm starts from u2 and performs a LERW until u1 is reached, then marks all nodes

and edges along the resulting path as visited. It then proceeds to the next node in U that has not

been previously visited, performs a LERW until reaching any previously visited node, and again

marks everything along that path as “previously visited.” This process is iterated until all nodes

have beeen visited. The resulting set of visited nodes and edges is a spanning tree on G̃; Wilson

showed that for any choice of U , the procedure samples each element of T with equal probability.

48



See also Lawler (1999)[pp. 211–212] for a more illuminating proof.

Corollary A.1. Pr
(
LERW(G̃, u2, u1) = ψ

)
is proportional to the number of spanning trees on G̃

that contain ψ.

Proof. Let W be a spanning-tree-valued random variable whose probability mass is uniformly

distributed over elements of T . Wilson’s algorithm is a procedure to sample W , in which

LERW(G̃, u2, u1) is the first step. A spanning tree contains one unique path between u2 and u1.

Therefore,

Pr
(
W = T, LERW(G̃, u2, u1) = γ

)
=

 Pr(W = T ) if γ is on T

0 if γ is not on T

It immediately follows that

Pr
(
LERW(G̃, u2, u1) = ψ

)
=

∑
T∈T

Pr
(
LERW(G̃, u2, u1) = ψ | W = T

)
Pr(W = T )

=
∑
T∈T

1{ψ is a subgraph of T} 1

|T |
. (3)

A.2.3 Deletion-Contraction Recurrence

I now outline a method that will be needed to count trees that contain a path. Consider an

arbitrary edge, e, in G̃. The deletion-contraction recurrence (see, e.g. Bollobás, 1998, Theorem

X.5.10, pp. 351–353) states that T can be divided into two disjoint sets: the set of spanning trees

that do not use e, and the set of spanning trees that do. The former is in one-to-one correspondence

with the set of spanning trees on the deletion, denoted G̃ − e, formed by cutting e. The latter

is similarly in one-to-one correspondence with the set of spanning trees on the contraction, G̃/e,

formed by fusing the endpoints of e into a single node.25 Thus, τ(G̃) = τ(G̃− e) + τ(G̃/e).

25Note that this procedure may result in a multigraph.
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A.2.4 Proof

We are now ready to prove Proposition 1.

By recursive deletion-contraction, there is a bijection between (i) the set of spanning trees on

G̃ that contain ψ as a subgraph and (ii) the set of spanning trees on the iterated contraction

G̃/eψ,1/ · · · /eψ,K , where eψ,t is the t-th edge in ψ. Kirchoff’s matrix-tree theorem states that the

number of spanning trees on a graph is given by the determinant of any minor of the graph’s

Laplacian matrix,

τ(G̃) = det L(−i,−j)(G̃),

for any i and j, where the Laplacian, L(G̃) = D̃ − Ã, is the diagonal degree matrix less the

adjacency matrix. Substituting into equation 3 yields

fLERW(ψ) = Pr(LERW(G̃, u2, u1) = ψ) =
1

τ(G̃)
det L(−i,−j)(G̃/eψ,1/ · · · /eψ,K),

for the LERW importance-sampling distribution, versus the target uniform distribution f(ψ) = 1
|P| .

The corrective weight for importance sampling is the ratio of the latter relative to the former, which

is

τ(G̃)

|P| det L(−i,−j)(G̃/eψ,1/ · · · /eψ,K)

A.3 Details of RPM Estimation by MCMC

In this appendix, I discuss computational issues in estimation and provide an algorithm for sam-

pling from the RPM posterior via MCMC. First, the sampling-reweighting procedure involves

large numbers of simulated paths and expensive matrix determinants. Rather than repeating al-

gorithm 1 in its entirety for each MH proposal, it is clearly advantageous to pre-compute a single

batch of paths and their weights. This has the ancillary benefit of reducing noise in the MH ac-
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ceptance ratio, as the simulated likelihood of both current and proposed parameters are estimated

with the same path-set.

To evaluate the likelihood at any point in the parameter space, algorithm 1 must compute the

unconditional (random-walk) probabilities of many paths. Because MCMC methods frequently

revisit a relatively small, dense-probability region in the parameter space, a näıve implementa-

tion will spend considerable time repeatedly evaluating the likelihood at infinitesimally differing

points. An alternative that considerably reduces running time, at the expense of initialization

time and memory, is to pre-compute a finely gridded piecewise-constant approximation of the

likelihood across a wide subspace. However, this contradicts the spirit of MCMC and is compu-

tationally infeasible for parameter spaces of moderate dimension. I implement a compromise by

lazy evaluation of the likelihood over the parameter grid. In areas that are never sampled by MH,

the computational cost is never incurred and memory usage is greatly decreased. After a cell is

sampled by the MH proposal distribution, the likelihood is evaluated and cached for future use,

or “memoized.” Thus, chains will accelerate as they grow longer or more numerous, particularly

when sampling the high-posterior-density region.
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Data:
starting node γ0, teminus γk, covariates X

unweighted graph G̃, number of path simulations S

initial parameters β(0), gridded parameter space B̃
number of Metropolis-Hastings samples R, proposal distribution Q(β∗; β(t))

Result:
R correlated samples from posterior of parameters β

Algorithm ChainMH(γ, X, β(0), B̃, Q)
for s ∈ 1, · · · , S do

draw ψs ∼ LERW(G̃, γ0, γk)
calculate ws = 1

det L(−i,−j)(G̃/ψs)

end

set evaluatedβ̃ = FALSE for all β̃ ∈ B̃
for r ∈ 0, · · · , R do

draw proposed parameters β∗ ∼ Q(β∗; β(r))
if parameter space is discretized then

calculate acceptance ratio α = ApproxSimLikelihood(β∗)

ApproxSimLikelihood(β(r))

else

calculate acceptance ratio α =

Pr(Γ=γ|v0=γ0,vK=γk,X,β∗)∑s
l=1

ws Pr(Γ=ψs|v0=γ0,vK=γk,X,β∗)

Pr(Γ=γ|v0=γ0,vK=γk,X,β(r))∑s
l=1

ws Pr(Γ=ψs|v0=γ0,vK=γk,X,β(r))
end
if α < 1 and jump ∼ Bern(α) then

set β(r+1) = β∗

else
set β(r+1) = β(r)

end

end

return β(0), · · · , β(R)

Procedure ApproxSimLikelihood(β)

set β̃ to center of grid cell in B̃ containing β
if evaluatedβ̃ then

return precomputed L̂(β̃ |X, γ)
else

set evaluatedβ̃ = TRUE

return and cache L̂(β̃ |X, γ) =
Pr(Γ=γ|v0=γ0,vK=γk,X,β̃)∑s

l=1 ws Pr(Γ=ψs|v0=γ0,vK=γk,X,β̃)
end

Algorithm 3: Implementing Metropolis-Hastings for a random-path model. Simulated likeli-
hood calculations are memoized so that chains accelerate as they sample the highest-posterior-
density region.

52



B Simulation

In this section, I first demonstrate the properties of the random-path distribution with a naturalis-

tic simulation. I then conduct a validation test in which a single path is drawn and its parameters

are estimated by MCMC. This procedure is repeated at various sample sizes and graph resolutions

in order to assess the consistency of the estimation procedure.

B.1 Simulation Distribution of Random Paths

The simulation ground is a virtual Hawai’i Island, rasterized into square cells of varying size. Each

cell is connected to a tic-tac-toe board consisting of the 8 adjacent cells and excluding self-loops.

I assume that a single road will be constructed from the western economic center, Kona, to the

county seat in the east, Hilo. Figure 12 depicts the difference between a typical random walk and

path on the unweighted graph; it is perhaps unnecessary to point out that the random path bears

a closer resemblance to actual Hawai’ian state highways.

Random Walk Random Path

Figure 12: One draw each from the random walk and random path distributions, on a 50×50 grid,
with all parameters set to zero.

One might reasonably expect a Hawai’ian road to avoid excessively mountainous regions, while

passing through as many villages as possible without deviating too far from a direct course. As a
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point of reference, actual state highways on the Big Island are roughly Θ-shaped, consisting of a

circular coastal highway and Saddle Road, which cuts directly from Kona to Hilo. To capture this

behavior, I include transformations of three covariates: (1) directness dirij, or how much closer

the i→ j step brings a walker to the target; (2) elevation elevj; and (3) population “gravity.”26

The covariates are shown in figure 13. For a walker at cell i, the unconditional (random-walk)

probability of stepping to adjacent cell j is

exp
(
βdir · dirij + βelevelevj + βpop · lpopij

)∑
j′∈Ni exp

(
βdir · dirij′ + βelevelevj′ + βpop · popij′

) .
Directness Elevation Population

Figure 13: RPM covariates on a 50×50 grid. Direction toward target (left) indicated by arrows.
Elevation (center) in terrain colors, green at sea level and white at ∼4, 000 m, around the peaks
of Mauna Kea and Mauna Loa. Log-population (right) plotted in red, with higher density in
more opaque regions. Arrows show the direction of population gravitational pull, with arrow size
indicating force.

The random-path distribution is the conditional random-walk distribution, given that the

walk does not contain cycles. The simulation distribution of a random-path model is the result

26 Directness is calculated as the inner product of the step vector (locationj − locationi) with a unit vector
pointing from i to Hilo. Elevation is rasterized by averaging National Elevation Dataset values within j, then scaled
and exponentiated to increase separation. Raster-cell population is generated to be consistent with 1940 census
tract data (with Gaussian allocation of tract population around approximate coordinates of in-tract villages); each
cell is assumed to generate a gravitational pull proportional to its log-population and the inverse squared distance,
and popij is operationalized as the inner product of the step-vector i→ j with the aggregate gravitational field at
i.
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of importance-sampling S paths, calculating the random-walk probability of each, then resam-

pling from the S paths with probability proportional to random-walk probability times inverse-

importance weights. The simulation distribution converges to the true RPM distribution as S

increases; in the illustrations that follow, I use S = 106 and resample 102 paths.

In figure 14, I show the result of increasing βdir. The left panel in figure 14 is a larger sample

from the baseline distribution with all parameters set to zero (the same RPM that generated the

right panel of figure 12). The baseline distribution is the path-conditioned version of a random

walk in which all adjacent cells are equally likely. After conditioning to walks that contain no

cycles, the random-path distribution exhibits a strong baseline preference for shorter (more direct)

paths. This is because the longer a walk continues, the more likely it is to double back on itself.

In the right panel, I show that this natural tendency can be reinforced by increasing βdir; at higher

values, the random path distribution becomes tighter and more focused. Figures 15 and 16 depict

the effects of βelev and βpop, respectively.

βdir = 0, βelev = 0, βpop = 0 βdir = 2, βelev = 0, βpop = 0

Figure 14: Higher values of βdir (right) result in a tighter distribution with more direct paths than
the baseline (left).
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βdir = 0, βelev = 0, βpop = 0 βdir = 0, βelev = −1, βpop = 0 βdir = 0, βelev = −2, βpop = 0

βdir = 2, βelev = 0, βpop = 0 βdir = 2, βelev = −1, βpop = 0 βdir = 2, βelev = −2, βpop = 0

Figure 15: Increasingly negative values of βelev (moving right) result in distributions that avoid
mountainous regions. However, this tendency can be partially overcome by higher values of βdir

(lower plots), which drive the path distribution over the saddle pass directly toward Hilo.

B.2 Validating the Estimation Procedure

B.2.1 Convergence

I first assess the MCMC convergence of the RPM posterior by randomly drawing a single path

from RPM(βdir = 0, βelev = −1, βpop = 0.5). The true distribution was chosen such that with

a single draw, equivalent to perusing a map, a reasonable human observer would consider β̂elev

to be negative and statistically significant and both β̂dir and β̂pop to be perhaps slightly positive

but indistinguishable from zero. In fact, the first sampled path (shown in figure 17) captures this

56



βdir = 0, βelev = −1, βpop = 0 βdir = 0, βelev = −1, βpop = .25 βdir = 0, βelev = −1, βpop = 1

βdir = 0, βelev = −1, βpop = 2 βdir = 0, βelev = −1, βpop = 3 βdir = 0, βelev = −1, βpop = 4

Figure 16: Small increases in βpop (upper row, moving right) make coastal paths more likely to
visit small towns instead of passing by (esp. Waimea, on the northern peninsula), then begin
to redirect paths away from the saddle pass and toward coastal population centers. At very
large values, however, this effect reverses as paths are pulled directly over the pass by the strong
gravitational pull of the large Hilo population (lower right).

intent nicely. Starting in the west at Kona, the path tracks the city limits as it diverts around

Hualalai, the volcano just outside the city, then traverses the saddle pass before exiting with a

slight flourish. I examine the extent to which the RPM posterior reflects these patterns. The

effective number of observations in a single path, after accounting for dependence, is somewhere

in [1, k].

I evaluate the mixing of MH-sampled MCMC and the resulting estimates. Chain length was
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Figure 17: A single draw from RPM(βdir = 0, βelev = −1, βpop = 0.5), plotted against elevation
(left) and population (right).

5,000 draws and the reduction in effective posterior sample size due to autocorrelation was a factor

of roughly 15, differing only slightly by parameter. This left an effective sample size of roughly

300–350 and sampling standard errors of parameter posterior means between 0.02 and 0.05—

more than an order of magnitude smaller than estimated posterior standard deviations, and quite

acceptable for present purposes. Chains for each parameter, posterior means, and 95% posterior

credible intervals are shown in figure 18; elevation was estimated to be negative and correctly

signed, while all other parameter estimates were insignificant.

B.2.2 Consistency

Next, I examine the Bayesian consistency of the RPM estimation procedure. Specifically, I generate

paths according to a true distribution, then evaluate whether the posterior means and variances of

the distribution parameters go to the true parameter and zero, respectively, (i) as the number of

paths increase, but approximate length of each path remains fixed; and (ii) as paths grow longer,

but the number of paths remain fixed. To test (i), I examine the RPM posterior distribution given

sample sizes of 1, 2, 4, 8, and 16 paths between fixed endpoints on the same graph. For (ii), I re-

rasterize the Hawai’i simulation ground into 10×10, 20×20, and 40×40 square grids, then compare
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Figure 18: RPM posterior for the path depicted in figure 17, with sampled parameter values on
the vertical axis and iterations on the horizontal. Parameter posterior means (dashed) and 95%
marginal posterior credible intervals (dotted) are plotted horizontally over each chain. The true
parameter is marked with a “×” on the vertical axis.
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the posterior on these graphs given a fixed number of sampled paths. Given computational

constraints, I focus here on the elevation parameter only. The true parameter used below is

βelev = −2.

Figure 19: 100 draws from RPM(βelev = −2) on 10×10, 20×20, and 40×40 square grids

The true RPM distributions are shown in figure 19 for each grid size. The procedure used

is as follows: For the 10×10 grid, a single path was sampled and its posterior distribution was

approximated by algorithm 3; this corresponds to the first horizontal line in the top-left panel

of figure 20. In total, 100 single paths were drawn on the 10×10 grid—results are shown in the

top-left panel.

Next, paths were sampled from the true model, two at a time; the approximate posteriors for

100 sampled pairs are shown in the second panel in the top row. This was repeated with samples

of 4, 8, and 16 paths. The entire process was repeated for the 20×20 and 40×40 grids (second

and third row of panels).

In this simulation, results initially show that estimates are correctly signed but unmistakably

biased toward zero for short paths. Variance goes to zero, but bias does not disappear as the

number of short paths increase. This suggests that for small graphs, a bias-correction step, such as

simulating paths from the posterior and re-estimating, may be necessary. As the graph grows larger

and paths grow longer, this bias disappears and estimates converge toward the true parameter.
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Figure 20: For each combination of sample size and grid size, 100 samples were drawn. Posterior
means are marked with “×”, 95% credible intervals with thin horizontal green lines, and 80%
intervals with thick green horizontal lines. The true parameter is shown with a vertical black
dotted line. Results show that estimator variance converges to zero as sample size increases, but
some bias remains when paths are short. This bias disappears as paths grow longer.

C Convergence of U.S. Interstate Highways Estimates

The posterior of RPM parameters in the U.S. Interstate Highway application was simulated by

MCMC. Five chains, of 10,000 samples each, were initialized at overdispersed locations. After

a burn-in of 2,000 iterations, visual diagnostics show excellent mixing and low autocorrelation

relative to chain length.
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Figure 21: After discarding the first 2,000 iterations of each chain as burn-in, marginal posterior densities of RPM
parameters over the remaining 8,000 iterations are extremely similar. Separate colors and line types represent each
chain. Vertical bars represent 2.5 and 97.5-th posterior percentiles.
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Figure 22: Traces of five chains, denoted by color. Visual inspection suggests that a burn-in of 2,000 iterations
is adequate and that autocorrelation is low relative to chain length.
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Figure 23: Visualizing MCMC chains with the first two principal components of the posterior distribution. The
plot shows that chains initialized at overdispersed starting positions converge to the same region in the parameter
space, with excellent mixing. The first component roughly captures population-related covariates, and the second
is a mix of the remaining covariates.
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D Convergence of Baghdad Sectarianism Estimates

The posterior of RPM parameters in the Baghdad walks application was simulated by MCMC.

Three chains, of 10,000 samples each, were initialized at overdispersed locations. After a burn-in

of 4,000 iterations, visual diagnostics show excellent mixing and low autocorrelation relative to

chain length.

Figure 24: After discarding the first 4,000 iterations of each chain as burn-in, marginal posterior densities of
RPM parameters over the remaining 6,000 iterations are extremely similar. Separate colors represent each chain.
Vertical bars represent 2.5 and 97.5-th posterior percentiles.
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Figure 25: Traces of three chains, denoted by color. Visual inspection suggests that a burn-in of 4,000 iterations
is adequate and that autocorrelation is low relative to chain length.
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Figure 26: Visualizing MCMC chains with the first two principal components of the posterior distribution. The
plot shows that chains converge to the same region in the parameter space, with excellent mixing.
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