ffgrep:
Scalable Approximate String Matching

Dean Knox*

Preliminary draft: 10 September 2019

Abstract

Approximate substring searching is a common but computationally demanding task in bioinformatics
and text analysis. We present a new approach that recasts string search as a multiple convolution
problem, then exploits highly efficient fast Fourier convolution techniques. This approach, which we call
ffgrep, computes and caches the spectra of a target corpora, drastically reducing the cost of subsequent
searches. Like other approaches, this algorithm is embarrassingly parallelizable; unlike other approaches,
it is capable of operating on not only raw strings, but also word embeddings. ffgrep is applied to an
original corpus of imperfect automatic transcriptions of campaign speeches in the 2012 U.S. presidential
election. We contrast our approach with agrep, an industry-standard meta-algorithm that selects the
optimal member from a number of highly optimized approximate string matching algorithms. Searching
for approximate recurrences of a manually curated set of candidate catchphrases, we show that ffgrep
speeds computation by up to a factor of 60x in typical settings, with increasing gains as alignments
grow longer or more complex. Moreover, these computational gains come at little cost in performance.
Taking agrep search results as ground truth, over a wide range of agrep parameters, we show that
ffgrep is capable of recovering highly similar results with accuracies exceeding 0.94 and F} of 0.84-0.9.
Finally, we demonstrate how efficient substring matching enables new substantive research by identifying
candidate catchphrases without human supervision. By rapidly computing and organizing 90 billion
pairwise string comparisons, our proposed method automatically learns that the phrases “kick children
off of Head Start or eliminate health insurance for the poor” and ‘“kick students are [sic| financial aid or
get rid of funding for Planned Parenthood or eliminate health care for millions on Medicaid”—along with
32 other campaign appeals—all map onto a single recurring theme, President Barack Obama’s critique
of a proposed Medicare reform.
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1 The Problem

We begin by formulating the problem. Consider a corpus of variable-length “target” documents in which the
i-th target, T;, is given by the J;-word sequence (T 1,...,T; s,), of word indices in a vocabulary V. Within
this corpus, we wish to identify all near-recurrences of a K-length “pattern,” P = (Py,..., Px), where P
again indexes words in V. Specifically, the goal is to identify (¢, j) pairs that indicate a subregion of similarity

to P in document ¢ beginning at offset j.

Various substring alignment algorithms differ in their exact operationalization of “similarity;” we clarify
ours in Section All agree that two (sub)strings containing an identical sequence of words are similar.
But because words in V are themselves composed of letter sequences, not disparate, two strings may also
be similar while containing no identical words. Conceptually, differences can manifest through insertions
of letters, deletions, substitutions, or transpositions of letters or spaces (which split or merge words as a
result) [Dam64]. However, the semantic distance between two strings, which is typically unmeasured, varies

nonlinearly with not only the count of these mutations [Lev66] but also their location.

2 Yet Another String Distance

A wide range of string distances have been proposed for quantifying general and domain-specific similarity,
including the classical Levenshtein edit distance, simplified variants [Ham50, NW70], and numerous modi-
fications, generalizations, and alternative approaches [AALT97, [KS95| [Tic84, [Ukk92]. For a review of this

extensive literature, we refer the reader to [Nav01].
Here, we propose yet another.

We encode each string as a word-letter matrix in which the k-th row contains frequencies for each of the
L letters—e.g., L = 4 in genomics, L = 26 in English. The result is a lossy representation of the original

string that discards information about letter ordering within words. This representation of the pattern is

Jix L

denoted KPL7 and target i is 7T; . An example is given in Table It is worth noting that word-embedding
X
matrices may be substituted for word-letter matrices with no furt

er modification of the algorithm proposed

below.

The similarity between two K-word sequences, P and @, is then operationalized as

K L ~ -
_ Zk:l Zzz1 Pk,e 4k,e
I1PllF 1QIF

S(P,Q) (1)
where A = [ake — @¢] indicates the column-demeaned transformation of A, age is the (k,¢)-th element of
A, and ||A|lr = /3.3 az 4 is the Frobenius norm. The chief advantages of this metric are that it is
extremely fast to compute with Algorithm [1| (as we show in Section [5.1)) and that it does not perform very

badly (Section [5.2)).

In intuitive terms, ||P||% is proportional to the pattern’s total variance, or the sum of letter-specific
variances, and the numerator is proportional to ZeL:1 Cov (Py, Qq), where P, is the sequence of counts for
letter . Thus, when L = 1, Equation [I] yields the correlation coefficient. For lack of imagination, we refer to
1—-8(P, Q) as the string correlation distance. S(-,-) is symmetric, bounded in [—1, 1], and has the property
S(P,P)=1.



Table 1: Word-letter matrix. Excerpted words from a President Barack Obama’s campaign speech during
the 2012 presidential election are represented using their letter counts. Word-letter matrix representations
are used for approximate string alignment in ffgrep.

abcdefghijkl mmopgqrstuvwzxyz

we’ve 2 11
doubled 1 21 1 1 1

the 1 1 1

amount 1 1 11 11

of 1 1

renewable 1 1 3 1 1 1 1
energy 2 1 1 1 1
that 1 1 2

we 1 1
generate 1 3 1 1 1 1

3 The Algorithm

Approximate string search involves examining all target documents ¢ and candidate offsets j within each
document. Figure [1] illustrates how this sequence can be obtained by sweeping a pattern over a tar-
get document. At each position, the similarity measure is computed, producing the alignment sequence
[S(P7 Tii1x).--,S(P, 1—;:7(.]i_K+1):Ji):|. A “hit,” or high-quality alignment, is a position in the target docu-
ment that produces a spike in this similarity sequence. In this section, we show how this apparently intensive
task can be reformulated using highly efficient rolling sums and Fourier transforms. We begin by examining
the elements of Equation

First, observe that ||T} 1.x||r is the grand sum of a row subset of [t?J] Corresponding values must be
F} , which

computed at every offset in document 4 to produce the sequence [||1~“11K||F, e ||TZ-}(Ji,K+1);Ji

is simply a rolling windowed sum on [{2.]1. Computation of ||P||r is even more straightforward.
ply g 7 p g

Next, we observe that the numerator, Z}f:l ZeL=1 Dk ¢ £i1j+k,1)g, can be rewritten as Zszl ZeL=1 Dreye tijph—1,6—
Zszl Zngl De ti j.0, where py is the mean of the pattern’s £-th column and ¢; ; ¢ is the mean count of letter ¢
in the K words starting at offset j in target i. The latter term can be simultaneously evaluated for all offsets
as follows: Compute the rolling column means of T, forming JTiL = [ti,j¢], then take its matrix product
with the vector [pg]. -

Finally, we are left with the term Zszl 25:1 Dk,e tij+k—1,6. Consider the contribution of a single letter,
Tije = Zle Dk, tij+k—1,e. Evaluating this expression at every possible offset in the target, from j =1
to J;, is computationally demanding. However, the resulting vector, [z; 1, ..., ¢, is the convolution
Py xT; o. It is well-known that the Fourier convolution theorem offers a drastically more efficient approach
for solving such problems. Briefly, the theorem states that Py x T; , = .7:_1(]:(Pg) ® ]-'(TM)), where F
is the Fourier transform, F~! is the inverse transform, and ® denotes the elementwise product. Thus,
ZeL=1 F1 (.7-" (Py) © F(T, M)) completes the rolling similarity score. By linearity of the Fourier transform,
this can be rewritten F ! (Zle F(P)OF (T%)e)), reducing complexity of the inverse step by an additional
factor of L. Moreover, because the goal of approximate string matching is to identify sharp peaks in the

similarity sequence, a sparse Fourier transform [HIKPI12] in the inverse step has the potential to reduce



computation time further. We do not explore sparsity-based optimizations here.

To identify approximate alignments, the resulting similarity sequence is thresholded. Additional details
of the implementation are discussed in Algorithm [I] Among other steps, we zero-pad the pattern to a
convenient length, then use the overlap-save method to cut targets into smaller batches of the same length.
Target batches are also zero-padded to avoid circular convolution. After computing the Fourier transforms
of the pattern and each batch, the target batch spectra are cached to accelerate subsequent searches against

the same targets.



Figure 1: Convolution of text sequences. The top panel depicts a word-letter matrix, P, for a single pattern: “we’ve
doubled the amount of renewable energy that we generate,” a quote from an Obama rally in Madison, WI. The bottom-left
panel illustrates how this pattern is swept over a target document, T;, an earlier speech in West Palm Beach, FL (bottom
middle). At offset j, the elementwise product with T; (;_x41):5, is taken and summed. This is repeated from j = 1 to target
length J;, and the sequence of resulting sums—the convolution—is plotted on the bottom right. Appropriate scaling yields
the desired sequence of correlation similarities. The peak successfully identifies the previous usage of a similar phrase, “we’ve
doubled our use of renewable energy like wind and...” from an earlier rally in West Palm Beach. Section explores word
blurring and gap smoothing, two modifications that improve the robustness of ffgrep to various string mutations.
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3.1 Extensions

The proposed string distance function assigns zero loss to transpositions of letters within words. However, in
the form described above, correlation distance is highly sensitive to word transposition, which often occurs
in scenarios that users of fuzzy string matching hope to detect, such as paraphrasing. When P is compared
to the mutated P’ with words k and k + 1 transposed, the loss is given by

L 2
= (pk,é — Pk 1,@)
1— S(P, P/) _ ZE 1 HP”Q + (2)
F

i pi,2+pz+l,€
25:1 Yo pi/,g
in which elements of the target document’s word-letter matrix, T;, are replaced with a weighted average of
nearby elements in the same column to produce the word-blurred matrix T7. For example, a triangular blur
kernel of radius 8 = 2 results in i’ﬂ = itm—,l’g + %tijg + %ti’j+1’[. For simplicity, we examine only triangular
word blurring in this paper, though more complex kernels are possible. Another variant, not considered
here, blurs across the letter dimension as well to reduce sensitivity to common misspellings.

which can be as large as or roughly 2/K. To address this issue, we employ word blurring,

By the same token, the proposed distance is not overly sensitive to insertions, deletions, and substitutions
of letters within words. It is also not severely affected by word substitutions. However, a key weakness is
that without further modification, it assigns potentially catastrophic loss to word insertions and deletions.
Consider the case when word W = [wy] is inserted at position &, which pushes back subsequent words to
form a sequence of length K + 1. Let P’ be the first K words and P” the last K. The resulting similarity
is lower-bounded by

k—1 L
S(P P’) > k=1 Ze:1 pi/,e

- ~ L L )
P15 = 300y Pl o + Doy wf

(3)

or approximately (k—1)/K in the worst case, and similarly, worst-case S(P, P") is approximately (K —k)/K.
The analysis of word deletion is essentially identical. This analysis immediately suggests a remedy. Mutated
phrases that differ by insertion or deletion of a single word can be detected by adding the similarity scores
of two adjacent offsets, producing an aggregate score of roughly (K — 1)/K or larger, then thresholding the
result. More generally, we propose postprocessing of the string correlation sequence by gap smoothing, which
sums the top +y values in a rolling window of width §, allowing ffgrep to detect up to v — 1 insertion/deletion
events with a cumulative gap of up to § — 1.

Importantly, this flexibility comes at extremely low computational cost relative to the convolution task.
In Section we present benchmarks demonstrating how these tuning parameters produce alignments that
are highly comparable to those of other approximate string matching algorithms. Algorithm [I| describes
their implementation in full.



Data: Word-letter matrices for pattern, P, and targets, (T1,...,Tn).

Parameters: Blur radius 3, gap parameter v, gap window ¢, detection threshold 6.
Result: (i, j) pairs indicating subregion of target i beginning at offset j.
Procedure:

Preprocess pattern.

Zero-pad P to M rows, blur columns with triangular kernel of width 25 — 1.
Compute total variance || P||r = Ef:l 25:1 Pi ¢» column means P = [pe).

Compute real-valued pattern spectrum F(P).
(14+M/2)X L

Search for pattern in targets.

for targeti in 1,...,N do
Initialize target offset j =1
Initialize similarity sequence [S(P,T;1:x),...,S(P,Ti (5,—r+1):7;)]

Overlap-save.

while 57 < J; do
Take batch U = T; ;.(j+m—Kk—g), a Tow subset of target 4

Zero-pad U to M rows, blur columns with triangular kernel

Compute and cache rolling batchwise target summaries.
Compute F(U)

Initialize rolling total variance [||I~J'1:K\|F, ey ||I~J<M,K+1>;MHF}

Initialize rolling column means U
M XL

for batch offset j' in1,...,M — K +1 do
Compute local variance ||Ujr.j4x—1)||F = \/Z;jf’:];/_l Sr u

T IR S ViEY e |
Compute local means Ujs = [? Zj/,:j, Ujrr g

end

Convolve and compute rolling similarity score.

Convolve [Z;,,‘LI;/_l Z;:l Dj e uj”,é] = _F_l ((_F(P) ® ./—"(U))]_)
Compute batch similarity sequence [S(P,U1.x),...,S(P,U; ;)] =

(;—1((;(1») O FU))L) - UP) @ (11Plle [I1Tuklle, . 1Ts-rraaallr) )

Take first M — K — 8 batch similarities and store in full similarity sequence.

Increment progress j =j+ M — K —(+1

end

Compute average of top v peaks in rolling window of width §

For each offset j exceeding detection threshold 6, output (i, j)
end

Algorithm 1: ffgrep. A procedure for efficient approximate substring alignment that applies Fourier
convolution and overlap-save to word-letter matrices. F(P) is the univariate Fourier transform applied
to columns of P. The operations ® and @ denote elementwise multiplication and division, respectively.



4 Data

We now introduce an original corpus of campaign speeches from the 2012 U.S. presidential election. A set
of campaign videos were collected from www.electad.com. Amazon Mechanical Turk workers segmented
videos to speech by President Barack Obama and Mitt Romney, eliminating introductory speakers and
other extraneous portionsE Audio was extracted and processed with the Google Cloud Speech-to-Text API,
producing 100 imperfect transcriptions of presidential campaign speech. Transcription errors, along with
frequently repeated or paraphrased stump speeches, make the corpus an ideal setting to test approximate
string alignment.

On average, presidential candidates spoke approximately 3,000 words over 20 minutes. From this 300,000-
word corpus, we manually curated 50 ten-word campaign “catchphrases” that approximately recurred across
multiple speeches. Catchphrases are reported in Table[2] Readers skeptical about the value of unsupervised
phrase detection, introduced in Section [f] are encouraged to attempt this task.

1Three independent workers reported segmentation times for each video, and recordings with substantial disagreement were
manually adjudicated.


www.electad.com

Table 2: Campaign catchphrases. Ten-word campaign catchprases were manually identified from tran-
scribed campaign speeches. For each phrase, the text (corrected for punctuation and capitalization) and
date of first exact usage is reported. One phrase was used exactly by both candidates: the “United States
of America is the greatest nation on earth.”

Speaker First use Pattern

Obama 22 Jun. 2012 United States of America is the greatest nation on earth.

Obama 1 Nov. 2012 Al Qaeda has been decimated. Osama Bin Laden is dead.

Obama 4 Oct. 2012 ... develop our natural gas thats right beneath our feet and...
Obama 4 Oct. 2012 . will win the election again. We’ll finish what we started.
Obama 11 Oct. 2012  That’s not who we are. That’s not what we’re about.

Obama 11 Oct. 2012 . we’re fighting for. That’s what’s at stake in this election.
Obama 18 Oct. 2012 ... fuel standards so by the middle of the next decade...

Obama 6 Sep. 2012 America is not about what can be done for us.

Obama 6 Sep. 2012 Help me recruit a hundred thousand math and science teachers.
Obama 6 Sep. 2012 I promised to end the war in Iraq. We did.

Obama 6 Sep. 2012 . immigrant who grew up here and went to school here...

Obama 6 Sep. 2012 In the next four years you can make that happen.

Obama 6 Sep. 2012 No family should have to set aside a college acceptance...

Obama 6 Sep. 2012 . since government can’t do everything, it should do almost nothing...
Obama 6 Sep. 2012 . spend their golden years at the mercy of insurance companies...
Obama 6 Sep. 2012 . trucks will go twice as far on a gallon of...

Obama 6 Sep. 2012 . voices will fill the void. The lobbyists and special interests...
Obama 6 Sep. 2012 . will sustain the strongest military the world has ever known.
Obama 6 Sep. 2012 .. will use the money we’re no longer spending on war...

Obama 7 Sep. 2012 ... chance to gain the skills that they need to compete.

Obama 7 Sep. 2012 I refuse to ask students to pay more for college.

Obama 7 Sep. 2012 Nobody who fights for this country should ever have to...

Obama 7 Sep. 2012 We want to keep investing in wind and solar and...

Obama 8 Sep. 2012 Bless you, and God bless the United States of America.

Obama 8 Sep. 2012 No company should have to look for workers in China.

Obama 8 Sep. 2012 We reinvented a dying auto industry thats back on top.

Obama 8 Sep. 2012 You’re the reason why we ended don’t ask dont tell.

Obama 9 Sep. 2012 . a choice between two fundamentally different visions of our future.
Obama 9 Sep. 2012 ... giving tax breaks to companies that are shipping jobs overseas.
Obama 9 Sep. 2012 ... there’s not another country on earth that wouldn’t trade places...
Obama 12 Sep. 2012 Everybody does their fair share. Everybody plays by the same...
Obama 12 Sep. 2012 It’s a bargain that says hard work will pay off.

Obama 12 Sep. 2012 ... to work rebuilding roads and bridges and runways and schools...
Obama 12 Sep. 2012 When our troops come home and take off their uniform...

Obama 13 Sep. 2012 America is less dependent on foreign oil than any time...

Obama 13 Sep. 2012 Make some phone calls for me and vote for me.

Obama 13 Sep. 2012 We’ve doubled the amount of renewable energy that we generate...
Obama 17 Sep. 2012 . new plants and training new workers and creating new jobs...
Obama 17 Sep. 2012 ... polluting the air your children breathe, well, thats the price...
Obama 17 Sep. 2012 We still got the best workers in the world and...

Obama 27 Sep. 2012 . wind down the war in Afghanistan in a responsible way...
Romney 24 Feb. 2012 ... free in this country to pursue happiness as we choose.

Romney 26 Feb. 2012 Those rights were life, liberty, and the pursuit of happiness.
Romney 12 May. 2012  Bless you, and God bless the United States of America.

Romney 1 Nov. 2012 ‘We have to champion small business. We have to help...

Romney 12 Oct. 2012 . spending every year a trillion dollars more than we take...
Romney 17 Oct. 2012 . get to see North American energy independence at eight years...
Romney 25 Oct. 2012 . please raise your hand so we can recognize you here.

Romney 25 Oct. 2012 . take full advantage of our oil, our coal, our gas...

Romney 8 Sep. 2012 . parents and the teachers first, and the teachers union behind...
Romney 11 Sep. 2012 . military that is second to none, that is so strong...




5 Benchmarks

We now report results from two comparisons between ffgrep and an industry-standard meta-algorithm,
agrep, that selects from a number of highly optimized fuzzy string alignment approaches. Notably, this set
includes bitap [BYG92, [WM92], which uses extremely fast bitwise operations and bit shifting to identify
alignments with a Levenshtein distance below some threshold. We use the implementation of TRE, a widely
used C library, as a reference point for evaluating the speed (Section and accuracy (Section of
ffgrep. Our proposed procedure is implemented in a mix of R and C++, integrated with Rcpp [EF1I].
Unlike agrep, it is not particularly well optimized and could likely benefit from the attention of a skilled
programmer. However, our Fourier routines utilize the FFTW library [FJ93]. FFTIW is an acronym for the
“fastest Fourier transform in the West.”

In additional unreported tests, we also evaluated ffgrep against Smith-Waterman, a dynamic program-
ming algorithm for sequence alignment. We utilized an implementation in Biostrings, an R package for
analysis of genetic and protein sequences. However, the runtime of this approach was impractically longer
than either agrep or ffgrep, and we did not pursue the comparison further.

5.1 Runtime

To compare the runtime of these two string matching approaches, we turn to an extended appeal that
President Barack Obama used in some form as part of 20-30 speeches, depending on the detection criterion.

Weve doubled the amount of renewable energy that we generate from sources like wind and solar.

Thousands of Americans have jobs today building wind turbines, long lasting batteries. Today,

United States of America is less dependent on oil than at any time in nearly two decades.
(President Barack Obama, 4 Oct. 2012, Madison, WI.)

We begin by excerpting the first K words of this phrase as our pattern, then using agrep to identify
approximate alignments in the full 100-document target corpus. We consider pattern lengths ranging K = 10
to 30, as well as edit distances thresholds of 0.1 to 0.4 times the number of characters in the pattern. Runtimes
are averaged over ten searches for each parameter combination.

We then examine the runtime of ffgrep in two stages. Unlike agrep, our proposed procedure requires
preprocessing of the target corpus to precompute its spectra and various rolling summary statistics. Thus,
its first use requires substantially longer (requiring both preprocessing and alignment) than subsequent
runs (alignment only). To facilitate comparison, we test preprocessing runtime by averaging ten iterations.
(Because preprocessing affects only the target corpus, it is unaffected by pattern length.) We then separately
report the average ffgrep alignment runtime for each K using default parameters, with no word blurring
or gap smoothing. The time costs of these steps are miniscule by design.

The results of this comparison are reported in Figure We first discuss results when seeking close
matches, or those resulting in an edit distance of less than 0.1—a favorable comparison for agrep, as we
show below. When approximate string alignment is attempted for a single pattern of ten words, agrep is more
computationally efficient at finding close matches due to the large preprocessing time required by ffgrep.
(Preprocessing takes longer than the actual alignment task by a factor of roughly 10-15x.) However, the
two methods immediately reach parity when a second search is run. This is because the marginal per-search
cost incurred by ffgrep is drastically lower—Dby factors of about 10-60x in the tasks we examine.

Next, we vary the alignment task. It is well known that the time complexity of agrep is increasing in the
length of the search pattern or the allowed edit distance of a match. In our benchmark task, runtime roughly
doubles when increasing pattern length from 10 to 20 words. Similarly, compared to a tightest edit distance
threshold considered, looser matching criteria can result in nearly triple the time cost. In fact, when using
an edit distance threshold of 0.2 times the pattern’s character count, combined ffgrep preprocessing and
alignment is faster than a single invocation of agrep. (This threshold is not a unrealistic one; in practice,
we find that it is often appropriate for detecting light paraphrasing.)
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In ffgrep, longer patterns impact alignment time as well, but to a lesser extent. Preprocessing time
increased by roughly 25% when doubling pattern length from 10 to 20, and alignment time increased by
less than 10%. Minor growth in search time stems from the fact that when longer patterns are used,
greater overlap between batches is needed in the overlap-save portion of the convolution. This increases the
number of batches, which in turn affects both preprocessing and alignment time roughly linearly. However,
the techniques that we develop for controlling sensitivity to word insertions, deletions, and transpositions
are by design virtually free. Blurring incurs a fixed cost for each target and each search pattern, but not
for every combination thereof. Gap smoothing is applied to the convolution output of every pattern-target
combination, but the time cost of both operations are negligible due to the high efficiency of rolling windowed
operators.

Figure 2: Runtime benchmarks. Dotted black lines indicate average agrep time cost, with different
shapes each denoting a detection threshold. Thresholds are expressed in terms of the ratio of allowed edit
distance to pattern letter count. The runtime of agrep increases substantially with longer search patterns or
looser detection thresholds. The dashed blue line indicates ffgrep preprocessing time, a one-time cost per
target corpus. The runtime of a single ffgrep alignment depicted with a solid red line. The time complexity
of ffgrep is unaffected by detection threshold.
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5.2 Performance

We now demonstrate that ffgrep’s substantial computational gains do not come at a large cost in perfor-
mance. To do so, we treat agrep results as ground truth (though in reality both algorithms almost certainly
miss semantically related phrases in the target corpus) and show that £fgrep produces closely similar results.
For clarity, we focus on agrep matches obtained at a edit-distance similarity threshold of 8, = 0.75 (the
midpoint of the range considered, allowing a maximum number of edits equal to i of the pattern length in
characters).

To facilitate reporting, the approximate alignment problem is recast to a binary classification problem
as follows. For each of the 50 patterns listed in Table 2] we use agrep to search within each of the 100
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target documents. If a target document contains any subsequence with similarity score exceeding 6,, a “hit”
is recorded for the entire target document. This procedure avoids complications with slight differences in
alignment offsets between the two algorithms. It results in 630 hits out of 5,000 pattern-target combinations.

For each parameter setting of ffgrep, we conduct the same 50 searches. Each setting again produced
5,000 binary classifications, which were compared to those from agrep. Optimal ffgrep parameters were
then selected by maximizing the F; score. (ffgrep strictly makes rule-based decisions and contains no
estimated parameters, only tuning parameters, so overfitting is not a concern.) Performance is shown in
Table 3] Overall, we find that the two algorithms produce closely similar results, with ffgrep yielding
Fy of 0.89 and 97% accuracy when treating agrep results as ground truth. We find that both approaches
are highly comparable over a wide range of search laxity (edit-distance thresholds ranging from 6, = 0.60
to 0.90), suggesting that ffgrep is able to function as a general-purpose replacement when speed is an
important consideration.

Table 3: Performance benchmark. ffgrep parameters were tuned to reproduce search results found
by agrep when used with a threshold of #, = 0.75. Optimal ffgrep results, as measured by Fj, were
obtained with 8 = 2 (blurring words into their immediate neighbors) and v = 0 (no gap smoothing). The
optimal model exhibits excellent performance; details are reported in the second column. Brackets contain
the minimum and maximum ffgrep performance when attempting to reproduce different agrep detection
thresholds, ranging from 6, = 0.6 to 6, = 0.9. These results show that ffgrep is a generally adequate
replacement for agrep results over a wide range of parameter settings.

Metric 0, =0.75 0, € [0.6,0.9]

Accuracy 0.97 [0.94, 0.98]
Precision 0.91 [0.81, 0.93]
Sensitivity 0.87 [0.78, 0.92]
Specificity 0.99 [0.98, 0.99]
R 0.89 [0.84, 0.90]

6 Unsupervised Phrase Clustering

We now turn to a substantive application that motivated the development of ffgrep. Our objective is to
identify recurring themes in political speech, like candidate catchphrases and campaign themes, with no
human intervention. The efficiency of the proposed approach makes it possible to compare every possible
phrase in the corpus to every other phrase, reducing the task to a network clustering problem. Below, we
describe details of the analysis and illustrate its results.

The corpus is cut into over 300,000 possible patterns by using a ten-word-wide window that is incremen-
tally advanced one word at a time. After precomputing and caching the spectra of the target documents,
Algorith [1] is applied for each pattern; it produces the same results as sweeping the pattern over every tar-
get and computing pointwise correlation similarity at each offset. Words are blurred into their immediate
neighbors (8 = 2), and we postprocess with gap smoothing that allows for a single-word insertion or deletion
(v =2 and 6 = 2). For any given pattern, the hit (4, j) represents a subsequence in target 7 at offset j, which
uniquely identifies another pattern. From this, we obtain a sparse, thresholded pattern similarity matrix
containing the equivalent of 90 billion pairwise comparisons.



Table 4: Selection of automatically extracted catchphrases. Detected catchphrases by Mitt Romney
include specific wordings of (a) an energy plan and (b) acknowledgement of veterans. These are particu-
lar instances of recurring themes that appeared in 28 and 27 campaign speeches, respectively (alternative
formulations omitted for space). Automatically extracted catchphrases by President Barack Obama include
discussions of (c) military strategy, 22 speechs; and (d) a Medicare reform critique, 34 speeches. Consecutive
phrases are merged for clarity.

do it ive got five things ill do to get this economy going number one were going to take
full advantage of our oil our gas are cold

(a) make sure we take advantage of our oil or gas or coal or nuclear renewables

is to finally take advantage of our oil our gas are cold our nuclear

is take full advantage of our oil our all our guests

our veterans and armed services members please raise your hands and be recognized
veterans please raise your hand so we can recognize you

(b) strife who more than self their country loved and mercy more than life what our veterans
and members of the armed services please raise your hands wow

veterans are members of members of our armed forces please raise your hand

abroad four years ago i promised to end the war in iraq we did i said wed wind down
the war in afghanistan and we are while a new tower rises above the new york skyline
were going to wind down the war in afghanistan we are and while a twin tower a new
a new tower rises above the new york skyline al qaeda is

what happens abroad for years ago i promised to end the war in iraq and i did i said
wed wind down the war in afghanistan in a responsible way and we are

years ago i told you id end the war in iraq and we did i said id end the war in afghanistan
and we are i said we focus on the people who actually attacked us on 911

going to ask 360000 ohio students to pay more for college or kick children off of head
start or eliminate health insurance for the poor

will kick students are financial aid or get rid of funding for planned parenthood or
eliminate health care for millions on medicaid

(d) or kick kids out of head start or eliminate health insurance for millions of americans
just to pay

to pay for another millionaires tax cut refuse to ask students to pay more for college
or kick children out of head start programs to eliminate health insurance for millions
of americans who are poor and elderly or disabled also those with the most can pay
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Figure 3: Recovered structure within a single automatically detected campaign appeal. The 100-document campaign speech corpus was cut into over
300,000 prospective patterns. For each one, ffgrep was used to efficiently search for approximate alignments in the full corpus. Components in the thresholded
similarity graph represent candidate catchphrases and recurring appeals. The vertex contraction of one component is depicted below; consecutive patterns from the
same document are fused and concatenated to facilitate visualization. With no human intervention, the approach automatically detects a critique of oil lobby influence
and a related, but not always co-occurring, call for investment in clean energy.

path were offering is to keep investing opponent i will not let oil companies

in wind and solar clean coal technology write this countrys energy plan or

a better path will keep on investing in

make sure farmers and scientists are endanger our coastlines or collect

wind and solar clean coal technology

. . harnessing new biofuel to power our another four-billion dollars in
. will invest to help farmers and
that come with them where farmers and .

. . . cars and our trucks lets put corporate welfare from our taxpayers
: . : seientists harness/newsbiofuels to
scientists harness new biofuels to
f power our cars and our trxucks lets put copstruction wogkers back to k i t i to let

X X . X you guys to know im not going to le

power our cars and our trucks-where option two is So unlike my oppbhent im
. some-construction workers 0il companies write this countrys
construction not. going to let oil companieg write

energy plan im not_going to let them

better plan were going to keep

where we a future where we keep
investing in wind and solar and clean
coal where farmers jand-scientists
harness new biofuels/to power our cars

and trucks where /constxuction workers

companies write our countrys-energy
plan or endanger ouy coastlines and i
dont want them to_keep collecting \four
billion-dollars. of corporate welfare
from our taxpayers weve got a better
pack we _keep investing-in-wind and
solar clean coall technology farmers and

scientists harnessing new biofuéls-to

this countrys energy plan/im not going
to let themtcontinue to/collect four
billiontdollars<in corporate welfare
from our taxpayers-weve got a better
path we want-to Keep yinvesting in wind
and _solar and’clean/ cleaner coal and we
want” farmers and geientists to harness

new biofuels to /power ‘our cars and our

keep collecting four billion dollars in

corporate welfare from our taxpayers

as im president im not going to let oil
companies write this countrys energy
plan and im net going to let them keep

on collecting four billion dollars

investing in wind and solar \and clean
colon and farmers afid_scientists can
harness biofuels to power ouricars and

our

want to build on it.im ndt-going to let
oil companies ‘dictate the countrys
energy plan and i| dont/want them to
keep collecting\four billion dollars a
year in corporate‘\welfare from our
taxpayers weve got a~pbetter path we
want to keep investing.in wind and
solar and clean/ coal technology we want

to see farmers and scientists harness

power our/cars and trucks

progress_or we can build on/it—im /not
going to let oil|companies write fthis
countrys—energy plan i dont want/them
to keep collecting| angther four/ billion
dollars in corporate/welfare . from our
taxpayers weve got é better plan where
we keep investing/ in| wind and solar-and
clean coal technology and farmers- and
scientists harness new-biofuels to

power-our cars and our trucks

trucks

orsone-that builds—on it you-know
unlike my ‘opponent “im not going to let
oil-companies write this /countrys
energy plan or\endanger//our codstlines
or collectanother| foyr billion dollars
in corporate welfare/welfare from from
our taxpayers weve éot a better path
where we keép investing in-wind-and
solar”and clean coal| technology-and
farmers and scientists harness new
biofuels to power our-cars and our

trucks

that progress see unlike my opponent im
not \going to let the oil companies
write-this \countrys energy plan im not
going to-.see them collect another four
billiontdollars in corporate welfare
from our'\taxpayers-weve got a better
plan where-we keep investing in wind
and solar and clean coal technology and
and where farmers and scientists are
harnessing new biofuels to power our

cars and trucks-and

can build on it hnhow unlike my opponent

new biofuels to power our cars and our im not going to let' the oil companies

can Puild-on we can/keep~<investing in

trucks write our energy plan im not gonna get

wind and solar and*clean coal and our

taxpayer-subsidies | every. year now weve
farmers and sCientists can

got a better plan.whete we keep our energy plan select four billion

invest in wind and sglar and clean cold investing in wind and solar and clean dollars of corporate welfare from our
we want progress we need to/Keep investing in 'y

coal and the taxpayers weve got a better plan where

wind and solar : :
we invested win and



The vast majority of patterns are unique isolates. However, we identify almost 41,500 ten-word segments
with at least a single close match, falling into over 1,300 components. In Table [d] we highlight a selection of
specific quotes from several recurring themes. Within a broader theme or cluster, exact quotes can exhibit
considerable variation; Figure [3] illustrates how President Obama highlights focus on different aspects of his
environmental platform at different points in the election. In general, smaller clusters are more common.
For example, one cluster contains only two nodes (Romney’s “... never again will we apologize for America
abroad...” and “... I will never apologize for America abroad...” )—a rare backhanded attack from a candidate
that usually spoke in more directly confrontational terms about his opponent’s supposed apologies.

We defer further analysis of catchphrases to future applied work. More generally, the ability to detect
mesoscopic structure in text corpora—i.e., at a higher level than individual words or n-grams, but below that
of bag-of-words topics—is a useful tool for studying the introduction, diffusion, and evolution of concepts
or memes over time and space. However, an important caveat is that the proposed approach is better able
to clustering concepts that either (1) have a low mutation rate or (2) are frequently recurring. The first is
self-evident; when two manifestations of the same concept are similarly worded, correlation similarity will
tend to be high. As for the second, when phrases A and B reflect the same underlying concept but use
very different wording, no edge is formed, but if another phrase C' uses elements of both, the three will be
grouped together. This property means that comparisons across memes should be undertaken with care.

7 Conclusion

In this paper, we develop ffgrep, a new algorithm for approximate alignment of strings. The method is
shown to be highly efficient, enabling previously infeasible tasks such as N-to-N comparisons of phrases
in large corpora. Performance on an English corpus is generally good, and this feature is likely to hold in
genetic strings as well. However, ffgrep is almost certainly unviable for languages such as Chinese even
with phoneticization. Important questions remain about its applicability to word-embedding representations.
While data structures for embedding sequences and word-letter sequences are virtually identical, the semantic
meaning of covariance in embedding space remains unclear. We leave this interesting question to future work.
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